
Youxiang Chew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3798767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser aided additive manufacturing of spatially heterostructured steels. International Journal of Machine Tools and Manufacture, 2022, 172, 103817.	6.2	26
2	Microstructure and mechanical behavior of the laser synthesized composites modified by micro/nano scale rare earth oxides. Journal of Alloys and Compounds, 2022, 895, 162641.	2.8	6
3	Enhanced corrosion resistance of laser aided additive manufactured CoCrNi medium entropy alloys with oxide inclusion. Corrosion Science, 2022, 195, 109965.	3.0	26
4	Effects of laser pulse modulation on intermetallic compounds formation for welding of Ti-6Al-4V and AA7075 using AA4047 filler. Materials and Design, 2022, 213, 110325.	3.3	27
5	Effect of cyclic heat treatment on microstructure and mechanical properties of laser aided additive manufacturing Ti–6Al–2Sn–4Zr–2Mo alloy. , 2022, 1, 100002.		13
6	Additive manufacturing of voxelized heterostructured materials with hierarchical phases. Additive Manufacturing, 2022, 54, 102775.	1.7	7
7	Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V. International Journal of Extreme Manufacturing, 2022, 4, 035102.	6.3	18
8	Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy. Journal of Materials Science and Technology, 2021, 77, 38-46.	5.6	18
9	Additive manufacturing of steel–copper functionally graded material with ultrahigh bonding strength. Journal of Materials Science and Technology, 2021, 72, 217-222.	5.6	64
10	On the heterogeneous cooling rates in laser-clad Al-50Si alloy. Surface and Coatings Technology, 2021, 408, 126780.	2.2	12
11	Additive manufacturing of multi-scale heterostructured high-strength steels. Materials Research Letters, 2021, 9, 291-299.	4.1	49
12	Microstructure and mechanical properties of ASTM A131 EH36 steel fabricated by laser aided additive manufacturing. Materials Characterization, 2021, 174, 110949.	1.9	4
13	Integrated numerical modelling and deep learning for multi-layer cube deposition planning in laser aided additive manufacturing. Virtual and Physical Prototyping, 2021, 16, 318-332.	5.3	16
14	Laves phase tuning for enhancing high temperature mechanical property improvement in laser directed energy deposited Inconel 718. Composites Part B: Engineering, 2021, 215, 108819.	5.9	33
15	Influence of oxides on the cryogenic tensile properties of the laser aided additive manufactured CoCrNi medium entropy alloy. Composites Part B: Engineering, 2021, 216, 108837.	5.9	30
16	Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Tiâ^'6Alâ~'4V alloy by trace Ni addition. Virtual and Physical Prototyping, 2021, 16, 417-427.	5.3	32
17	Superior strength-ductility in laser aided additive manufactured high-strength steel by combination of intrinsic tempering and heat treatment. Virtual and Physical Prototyping, 2021, 16, 460-480.	5.3	17
18	Progress and perspectives in laser additive manufacturing of key aeroengine materials. International Journal of Machine Tools and Manufacture, 2021, 170, 103804.	6.2	156

YOUXIANG CHEW

#	Article	IF	CITATIONS
19	Thermo-metallurgical simulation and performance evaluation of hybrid laser arc welding of chromium-molybdenum steel. Materials and Design, 2021, 210, 110029.	3.3	11
20	Double-side friction stir welding of thick magnesium alloy: microstructure and mechanical properties. Science and Technology of Welding and Joining, 2020, 25, 359-368.	1.5	20
21	Data-Driven Adaptive Control for Laser-Based Additive Manufacturing with Automatic Controller Tuning. Applied Sciences (Switzerland), 2020, 10, 7967.	1.3	12
22	Mechanical properties and microstructure evolution of selective laser melting Inconel 718 along building direction and sectional dimension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139941.	2.6	38
23	IN100 Ni-based superalloy fabricated by micro-laser aided additive manufacturing: Correlation of the microstructure and fracture mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139467.	2.6	16
24	Excellent combination of strength and ductility of CoCrNi medium entropy alloy fabricated by laser aided additive manufacturing. Additive Manufacturing, 2020, 34, 101202.	1.7	17
25	Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Computer Methods in Applied Mechanics and Engineering, 2020, 362, 112734.	3.4	77
26	Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites. Applied Surface Science, 2019, 490, 522-534.	3.1	35
27	Thermal analyses for optimal scanning pattern evaluation in laser aided additive manufacturing. Journal of Materials Processing Technology, 2019, 271, 178-188.	3.1	33
28	Characterization of wear properties of the functionally graded material deposited on cast iron by laser-aided additive manufacturing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4097-4105.	1.5	20
29	Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Materials and Design, 2019, 162, 80-93.	3.3	75
30	Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 137-144.	2.6	166
31	Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis. Materials and Design, 2018, 137, 286-297.	3.3	95
32	Numerical study of temperature and cooling rate in selective laser melting with functionally graded support structures. Additive Manufacturing, 2018, 24, 543-551.	1.7	20
33	Process study and characterization of properties of FerCrNiMnCo high-entropy alloys fabricated by laser-aided additive manufacturing. , 2018, , .		2
34	Effects of laser cladding on fatigue performance of AISI 4340 steel in the as-clad and machine treated conditions. Journal of Materials Processing Technology, 2017, 243, 246-257.	3.1	39
35	The effect of different shapes of holes on the crushing characteristics of aluminum square windowed tubes under dynamic axial loading. Thin-Walled Structures, 2017, 119, 412-420.	2.7	58
36	Microstructure and mechanical properties of Inconel 625/nano-TiB2 composite fabricated by LAAM. Materials and Design, 2016, 111, 70-79.	3.3	55

YOUXIANG CHEW

#	Article	IF	CITATIONS
37	Fatigue life prediction model for laser clad AISI 4340 specimens with multiple surface cracks. International Journal of Fatigue, 2016, 87, 235-244.	2.8	22
38	Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads. Journal of Materials Processing Technology, 2015, 224, 89-101.	3.1	120
39	Fatigue Growth Analysis of Pre Induced Surface Defects Using Piezoelectric Wafer Based Impedance Method and Digital Image Correlation System. Journal of Nondestructive Evaluation, 2014, 33, 413-426.	1.1	11
40	Energy harvesting from a convection-driven Rijke-Zhao thermoacoustic engine. Journal of Applied Physics, 2012, 112, .	1.1	62
41	Fatigue Crack Growth and Coalescence Algorithm Starting from Multiple Surface Cracks. Advanced Materials Research, 0, 891-892, 1003-1008.	0.3	2
42	Fatigue Monitoring of Double Surface Defects Using PZT Based Electromechanical Impedance and Digital Image Correlation Methods. Advanced Materials Research, 0, 891-892, 551-556.	0.3	5
43	Repair feasibility of SS416 stainless steel via laser aided additive manufacturing with SS410/Inconel625 powders. IOP Conference Series: Materials Science and Engineering, 0, 744, 012031.	0.3	3