Scott E Hensley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3798054/publications.pdf Version: 2024-02-01

		61857	69108
79	11,501	43	77
papers	citations	h-index	g-index
114 all docs	114 docs citations	114 times ranked	17472 citing authors

#	Article	IF	CITATIONS
1	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369, .	6.0	1,280
2	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	13.7	699
3	Comprehensive mapping of immune perturbations associated with severe COVID-19. Science Immunology, 2020, 5, .	5.6	677
4	mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, 374, abm0829.	6.0	609
5	Distinct antibody and memory B cell responses in SARS-CoV-2 naÃ⁻ve and recovered individuals after mRNA vaccination. Science Immunology, 2021, 6, .	5.6	556
6	Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12578-12583.	3.3	437
7	Hemagglutinin Receptor Binding Avidity Drives Influenza A Virus Antigenic Drift. Science, 2009, 326, 734-736.	6.0	429
8	Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nature Medicine, 2021, 27, 1990-2001.	15.2	396
9	Rapid induction of antigen-specific CD4+ TÂcells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity, 2021, 54, 2133-2142.e3.	6.6	367
10	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	4.2	366
11	CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nature Medicine, 2021, 27, 1280-1289.	15.2	365
12	Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell, 2021, 184, 1858-1864.e10.	13.5	332
13	Assessment of Maternal and Neonatal Cord Blood SARS-CoV-2 Antibodies and Placental Transfer Ratios. JAMA Pediatrics, 2021, 175, 594.	3.3	217
14	Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15798-15803.	3.3	203
15	Immune history and influenza virus susceptibility. Current Opinion in Virology, 2017, 22, 105-111.	2.6	199
16	Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nature Communications, 2018, 9, 3361.	5.8	189
17	A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathogens, 2017, 13, e1006682.	2.1	188
18	Cutting Edge: IL-4, IL-21, and IFN-γ Interact To Govern T-bet and CD11c Expression in TLR-Activated B Cells. Journal of Immunology, 2016, 197, 1023-1028.	0.4	183

#	Article	IF	CITATIONS
19	Identification of Hemagglutinin Residues Responsible for H3N2 Antigenic Drift during the 2014–2015 Influenza Season. Cell Reports, 2015, 12, 1-6.	2.9	182
20	Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers. JAMA Internal Medicine, 2021, 181, 195.	2.6	168
21	Immune history shapes specificity of pandemic H1N1 influenza antibody responses. Journal of Experimental Medicine, 2013, 210, 1493-1500.	4.2	163
22	Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared with adult and pediatric COVID-19. Science Immunology, 2021, 6, .	5.6	152
23	Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell, 2022, 185, 1875-1887.e8.	13.5	148
24	The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity, 2020, 52, 842-855.e6.	6.6	144
25	Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Science Immunology, 2017, 2, .	5.6	141
26	Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly Individuals. Cell Host and Microbe, 2019, 25, 357-366.e6.	5.1	124
27	Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1417-22.	3.3	122
28	SARS-CoV-2 seroprevalence among parturient women in Philadelphia. Science Immunology, 2020, 5, .	5.6	121
29	Complete mapping of viral escape from neutralizing antibodies. PLoS Pathogens, 2017, 13, e1006271.	2.1	120
30	Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Advances, 2020, 4, 6051-6063.	2.5	105
31	Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell, 2022, 185, 1008-1024.e15.	13.5	101
32	Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. ELife, 2019, 8, .	2.8	80
33	Type I Interferon Inhibits Antibody Responses Induced by a Chimpanzee Adenovirus Vector. Molecular Therapy, 2007, 15, 393-403.	3.7	76
34	Human Influenza A Virus Hemagglutinin Glycan Evolution Follows a Temporal Pattern to a Glycan Limit. MBio, 2019, 10, .	1.8	74
35	Dendritic Cell Maturation, but Not CD8+T Cell Induction, Is Dependent on Type I IFN Signaling during Vaccination with Adenovirus Vectors. Journal of Immunology, 2005, 175, 6032-6041.	0.4	67
36	Challenges of selecting seasonal influenza vaccine strains for humans with diverse pre-exposure histories. Current Opinion in Virology, 2014, 8, 85-89.	2.6	67

#	Article	IF	CITATIONS
37	Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. Journal of Infectious Diseases, 2019, 219, S38-S45.	1.9	67
38	Influenza A Virus Hemagglutinin Antibody Escape Promotes Neuraminidase Antigenic Variation and Drug Resistance. PLoS ONE, 2011, 6, e15190.	1.1	67
39	Single Hemagglutinin Mutations That Alter both Antigenicity and Receptor Binding Avidity Influence Influenza Virus Antigenic Clustering. Journal of Virology, 2013, 87, 9904-9910.	1.5	65
40	Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17221-17227.	3.3	64
41	Antibodies with â€~Original Antigenic Sin' Properties Are Valuable Components of Secondary Immune Responses to Influenza Viruses. PLoS Pathogens, 2016, 12, e1005806.	2.1	60
42	Propagation and Characterization of Influenza Virus Stocks That Lack High Levels of Defective Viral Genomes and Hemagglutinin Mutations. Frontiers in Microbiology, 2016, 7, 326.	1.5	55
43	Antibodies Against the Current Influenza A(H1N1) Vaccine Strain Do Not Protect Some Individuals From Infection With Contemporary Circulating Influenza A(H1N1) Virus Strains. Journal of Infectious Diseases, 2016, 214, 1947-1951.	1.9	55
44	Recent H3N2 Influenza Virus Clinical Isolates Rapidly Acquire Hemagglutinin or Neuraminidase Mutations When Propagated for Antigenic Analyses. Journal of Virology, 2014, 88, 10986-10989.	1.5	53
45	Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012–2013. Clinical Infectious Diseases, 2018, 67, 327-333.	2.9	53
46	A randomized controlled study of convalescent plasma for individuals hospitalized with COVID-19 pneumonia. Journal of Clinical Investigation, 2021, 131, .	3.9	51
47	Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) Antibody Responses in Children With Multisystem Inflammatory Syndrome in Children (MIS-C) and Mild and Severe Coronavirus Disease 2019 (COVID-19). Journal of the Pediatric Infectious Diseases Society, 2021, 10, 669-673.	0.6	45
48	Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility. Nature Communications, 2020, 11, 4566.	5.8	43
49	Cytomegalovirus Latent Infection is Associated with an Increased Risk of COVID-19-Related Hospitalization. Journal of Infectious Diseases, 2022, 226, 463-473.	1.9	39
50	Convalescent plasma for pediatric patients with SARSâ€CoVâ€2â€associated acute respiratory distress syndrome. Pediatric Blood and Cancer, 2020, 67, e28693.	0.8	37
51	Assessing the Protective Potential of H1N1 Influenza Virus Hemagglutinin Head and Stalk Antibodies in Humans. Journal of Virology, 2019, 93, .	1.5	33
52	Challenges of Making Effective Influenza Vaccines. Annual Review of Virology, 2020, 7, 495-512.	3.0	30
53	Landscape of coordinated immune responses to H1N1 challenge in humans. Journal of Clinical Investigation, 2020, 130, 5800-5816.	3.9	28
54	Comparison of Human H3N2 Antibody Responses Elicited by Egg-Based, Cell-Based, and Recombinant Protein–Based Influenza Vaccines During the 2017–2018 Season. Clinical Infectious Diseases, 2020, 71, 1447-1453.	2.9	27

#	Article	IF	CITATIONS
55	Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice. Science Translational Medicine, 2020, 12, .	5.8	27
56	Signaling Through FcÎ ³ RIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Frontiers in Immunology, 2022, 13, 834988.	2.2	26
57	Compensatory Hemagglutinin Mutations Alter Antigenic Properties of Influenza Viruses. Journal of Virology, 2013, 87, 11168-11172.	1.5	25
58	Antigenic and virological properties of an H3N2 variant that continues to dominate the 2021–22 Northern Hemisphere influenza season. Cell Reports, 2022, 39, 110897.	2.9	24
59	Identification of Antibodies Targeting the H3N2 Hemagglutinin Receptor Binding Site following Vaccination of Humans. Cell Reports, 2019, 29, 4460-4470.e8.	2.9	22
60	Health care worker seromonitoring reveals complex relationships between common coronavirus antibodies and COVID-19 symptom duration. JCI Insight, 2021, 6, .	2.3	22
61	Influenza Vaccines Delivered in Early Childhood Could Turn Antigenic Sin into Antigenic Blessings. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038471.	2.9	22
62	Characterization of Zika virus binding and enhancement potential of a large panel of flavivirus murine monoclonal antibodies. Virology, 2017, 508, 1-6.	1.1	20
63	Sera from Individuals with Narrowly Focused Influenza Virus Antibodies Rapidly Select Viral Escape Mutations <i>In Ovo</i> . Journal of Virology, 2018, 92, .	1.5	19
64	Antigenic assessment of the H3N2 component of the 2019-2020 Northern Hemisphere influenza vaccine. Nature Communications, 2020, 11, 2445.	5.8	19
65	Impaired humoral immunity is associated with prolonged COVID-19 despite robust CD8 TÂcell responses. Cancer Cell, 2022, 40, 738-753.e5.	7.7	19
66	Identification of human vaccinees that possess antibodies targeting the egg-adapted hemagglutinin receptor binding site of an H1N1 influenza vaccine strain. Vaccine, 2018, 36, 4095-4101.	1.7	18
67	Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection. Cell Reports, 2018, 22, 411-426.	2.9	15
68	Vaccination reshapes the virus-specific T cell repertoire in unexposed adults. Immunity, 2021, 54, 1245-1256.e5.	6.6	15
69	Pre-existing heterosubtypic immunity provides a barrier to airborne transmission of influenza viruses. PLoS Pathogens, 2021, 17, e1009273.	2.1	14
70	SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2. Journal of Biochemistry, 2021, 170, 299-306.	0.9	13
71	Neighborhood Characteristics and Racial Disparities in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Seropositivity in Pregnancy. Obstetrics and Gynecology, 2022, 139, 1018-1026.	1.2	9
72	An Egg-Derived Sulfated <i>N</i> -Acetyllactosamine Glycan Is an Antigenic Decoy of Influenza Virus Vaccines. MBio, 2021, 12, e0083821.	1.8	8

#	Article	IF	CITATIONS
73	The parasite-derived rOv-ASP-1 is an effective antigen-sparing CD4 + T cell-dependent adjuvant for the trivalent inactivated influenza vaccine, and functions in the absence of MyD88 pathway. Vaccine, 2018, 36, 3650-3665.	1.7	7
74	Potential Antigenic Mismatch of the H3N2 Component of the 2019 Southern Hemisphere Influenza Vaccine. Clinical Infectious Diseases, 2020, 70, 2432-2434.	2.9	5
75	Canine H3N8 influenza vaccines partially protect mice against the canine H3N2 strain currently circulating in the United States. Vaccine, 2016, 34, 5483-5487.	1.7	2
76	SARS-CoV-2 Seropositivity and Seroconversion in Patients Undergoing Active Cancer-Directed Therapy. JCO Oncology Practice, 2021, 17, e1879-e1886.	1.4	2
77	Evolution of SARS-CoV-2 Seroprevalence Among Employees of a United States Academic Children's Hospital During the COVID-19 Pandemic. Infection Control and Hospital Epidemiology, 2021, , 1-24.	1.0	2
78	The 2009 Pandemic H1N1 Hemagglutinin Stalk Remained Antigenically Stable after Circulating in Humans for a Decade. Journal of Virology, 2022, 96, e0220021.	1.5	0
79	Assessment of SARS-CoV-2 serostatus and hypertensive disorders of pregnancy. American Journal of Obstetrics and Gynecology, 2022, , .	0.7	Ο