Mingfang Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3797754/publications.pdf Version: 2024-02-01

MINCEANC OLAN

#	Article	IF	CITATIONS
1	Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations. Scientific Reports, 2018, 8, 8235.	3.3	64
2	Effect of reinforcement shape on fracture behaviour of SiC/Al composites with network architecture. Composite Structures, 2019, 215, 411-420.	5.8	48
3	Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique. Materials and Design, 2017, 114, 1-9.	7.0	45
4	Effect of chemical ordering annealing on martensitic transformation and superelasticity in polycrystalline Ni–Mn–Ga microwires. Journal of Alloys and Compounds, 2015, 645, 335-343.	5.5	40
5	In-vitro cytotoxicity and in-vivo biocompatibility of as-extruded Mg–4.0Zn–0.2Ca alloy. Materials Science and Engineering C, 2012, 32, 665-669.	7.3	36
6	Superelasticity and shape memory effects in polycrystalline Ni–Mn–Ga microwires. Journal of Alloys and Compounds, 2013, 577, S296-S299.	5.5	35
7	Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys. Journal of Magnetism and Magnetic Materials, 2017, 428, 464-468.	2.3	34
8	Nano-Ti5Si3 leading to enhancement of oxidation resistance. Corrosion Science, 2018, 140, 223-230.	6.6	33
9	Enhanced magnetic refrigeration capacity in Ni-Mn-Ga micro-particles. Materials and Design, 2018, 148, 115-123.	7.0	32
10	Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires. Applied Physics Letters, 2016, 108, .	3.3	30
11	Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. Journal of Alloys and Compounds, 2017, 715, 206-213.	5.5	28
12	Elastocaloric effect in bamboo-grained Cu71.1Al17.2Mn11.7 microwires. Journal of Alloys and Compounds, 2021, 850, 156612.	5.5	27
13	Elastocaloric effects in ultra-fine grained NiTi microwires processed by cold-drawing. APL Materials, 2018, 6, .	5.1	26
14	Martensite transformation and magnetic properties of Fe-doped Ni-Mn-Sn alloys with dual phases. Journal of Alloys and Compounds, 2016, 689, 481-488.	5.5	25
15	Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process. Journal of Alloys and Compounds, 2016, 660, 244-251.	5.5	25
16	Enhanced magnetic entropy change and working temperature interval in Ni–Mn–In–Co alloys. Journal of Alloys and Compounds, 2016, 656, 154-158.	5.5	24
17	Elastocaloric effect with small hysteresis in bamboo-grained Cu–Al–Mn microwires. Journal of Materials Science, 2019, 54, 9613-9621.	3.7	24
18	Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu–Al–Mn microwires via cold-drawing. International Journal of Refrigeration, 2020, 114, 54-61.	3.4	24

MINGFANG QIAN

#	Article	IF	CITATIONS
19	Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires. Scientific Reports, 2018, 8, 16574.	3.3	22
20	Elastocaloric effects related to B2↔R and B2↔B19′ martensite transformations in nanocrystalline Ni50.5Ti49.5 microwires. Journal of Alloys and Compounds, 2019, 792, 780-788.	5.5	22
21	Grain structure related inhomogeneous elastocaloric effects in Cu–Al–Mn shape memory microwires. Scripta Materialia, 2020, 178, 356-360.	5.2	22
22	Enhancing the Elastocaloric Cooling Stability of NiFeGa Alloys via Introducing Pores. Advanced Engineering Materials, 2020, 22, 1901140.	3.5	20
23	Effect of Si doping on microstructure and martensite transformation in Ni-Mn-Sb ferromagnetic shape memory alloys. Intermetallics, 2018, 97, 1-7.	3.9	19
24	Microstructure and mechanical properties of ABOw and nickel-coated MWCNTs reinforced 2024Al hybrid composite fabricated by squeeze casting. Materials Chemistry and Physics, 2019, 226, 344-349.	4.0	19
25	Ultra-high strength GNP/2024Al composite via thermomechanical treatment. Journal of Materials Science and Technology, 2022, 108, 164-172.	10.7	19
26	Introducing equiaxed grains and texture into Ni-Mn-Ga alloys by hot extrusion for superplasticity. Materials and Design, 2016, 112, 339-344.	7.0	17
27	Martensite transformation and superelasticity in polycrystalline Ni–Mn–Ga–Fe microwires prepared by melt-extraction technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 157-163.	5.6	16
28	Effect of partial metamagnetic and magnetic transition coupling on the magnetocaloric effect of Ni-Mn-Sn-Fe alloy. Intermetallics, 2019, 105, 124-129.	3.9	15
29	Giant room-temperature inverse and conventional magnetocaloric effects in Ni–Mn–In alloys. Materials Letters, 2016, 163, 274-276.	2.6	14
30	Reversible elastocaloric effects with small hysteresis in nanocrystalline Ni-Ti microwires. AIP Advances, 2018, 8, .	1.3	13
31	Structural, Magnetic and Mechanical Properties of Oligocrystalline Ni-Mn-Ga Shape Memory Microwires. Materials Today: Proceedings, 2015, 2, S577-S581.	1.8	11
32	Enhanced working stability of elastocaloric effects in polycrystalline Ni-Fe-Ga dual phase alloy. Intermetallics, 2021, 136, 107255.	3.9	11
33	Enhanced elastocaloric stability in NiTi alloys under shear stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142787.	5.6	11
34	Compressive deformation of polycrystalline Ni-Mn-Ga alloys near chemical ordering transition temperature. Materials and Design, 2018, 142, 329-339.	7.0	8
35	Magnetocaloric effect in Ni–Fe–Mn–Sn microwires with nano-sized γ precipitates. Applied Physics Letters, 2020, 116,	3.3	8
36	Fracture behaviour of SiCp/Al composites with network architecture. Materialia, 2020, 12, 100725.	2.7	8

MINGFANG QIAN

#	Article	IF	CITATIONS
37	Shape memory effects of Ni _{49.7} Mn _{25.0} Ga _{19.8} Fe _{5.5} microwires prepared by rapid solidification. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2532-2536.	1.8	7
38	Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. Journal of Magnetism and Magnetic Materials, 2020, 500, 166359.	2.3	6
39	Numerical analysis of an active magnetic regenerator with parallel wire geometry based on a 1D AMR model. International Journal of Refrigeration, 2021, 129, 250-258.	3.4	6
40	Optimization of microstructure and magnetocaloric effect by heat treatment process in LaFe11.7Si1.3 microwire. Journal of Alloys and Compounds, 2022, 890, 161845.	5.5	6
41	Enhanced stress concentration sensitivity of SiCp/Al composite with network architecture. Journal of Composite Materials, 2022, 56, 1165-1174.	2.4	6
42	Investigating the microstructure and magnetic properties of La-Fe-Si microwires during fabrication and heat treatment process. Journal of Alloys and Compounds, 2019, 794, 153-162.	5.5	3
43	Dataset on enhanced magnetic refrigeration capacity in Ni–Mn–Ga micro-particles. Data in Brief, 2018, 19, 444-448.	1.0	2
44	Microstructure and Texture after Deformation-induced Grain growth in Polycrystalline Ni48Mn30Ga22 Alloys. Materials Today: Proceedings, 2015, 2, S863-S866.	1.8	1
45	Ferromagnetic Shape Memory Alloys: Foams and Microwires. , 0, , .		1
46	Effect of Co-Doping on the Microstructure, Martensitic Transformation Behavior, and Magnetocaloric Effect of Ni-Mn-Sb-Si Ferromagnetic Shape Memory Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6416-6425.	2.2	1
47	Martensite transformation behavior and magnetocaloric effect in annealed Ni-Co-Mn-Sn microwires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115477.	3.5	1
48	An Overview on Magnetic Shape Memory Alloys. , 2022, , 1-33.		1
49	Dataset on the microstructure Ni50Mn38Sb9Si3 alloy and compositions of Ni50Mn38Sb12â^'Si (x=2.5, 3) ferromagnetic shape memory alloys. Data in Brief, 2018, 19, 222-225.	1.0	0
50	Grain Structure Related Inhomogeneous Elastocaloric Effects in Cu-Al-Mn Shape Memory Microwires. SSRN Electronic Journal, 0, , .	0.4	0
51	Enhancing Toughness of Particulate Aluminum Composites Via Tailoring Inhomogeneous Particle Distribution. SSRN Electronic Journal, 0, , .	0.4	0
52	Properties of Magnetic Shape Memory Alloy Microwires. , 2022, , 165-227.		0
53	Preparation and Properties of Bulk Magnetic Shape Memory Alloys. , 2022, , 35-69.		0
54	Preparation and Heat Treatment of Magnetic Shape Memory Alloy Microwires. , 2022, , 101-163.		0

#	Article	IF	CITATIONS
55	Preparation and Properties of Magnetic Shape Memory Alloy Particles. , 2022, , 229-254.		Ο
56	Preparation and Properties of Magnetic Shape Memory Alloy Foams. , 2022, , 71-99.		0