Clifton E Barry Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3797343/publications.pdf

Version: 2024-02-01

308 papers 43,550 citations

101 h-index 2509 196 g-index

325 all docs

325 docs citations

325 times ranked 26055 citing authors

#	Article	IF	CITATIONS
1	Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393, 537-544.	27.8	7,357
2	The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 2009, 7, 845-855.	28.6	1,179
3	A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405, 962-966.	27.8	971
4	A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 2004, 431, 84-87.	27.8	673
5	Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, 511, 99-103.	27.8	650
6	Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infection and Immunity, 2008, 76, 2333-2340.	2.2	570
7	PA-824 Kills Nonreplicating <i>Mycobacterium tuberculosis</i> by Intracellular NO Release. Science, 2008, 322, 1392-1395.	12.6	568
8	The Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of Metabolism. Journal of Biological Chemistry, 2004, 279, 40174-40184.	3.4	547
9	Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-Â/Â. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5752-5757.	7.1	544
10	Mycolic acids: structure, biosynthesis and physiological functions. Progress in Lipid Research, 1998, 37, 143-179.	11.6	504
11	The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1252-1257.	7.1	500
12	Linezolid for Treatment of Chronic Extensively Drug-Resistant Tuberculosis. New England Journal of Medicine, 2012, 367, 1508-1518.	27.0	496
13	Tuberculosis. Lancet, The, 2016, 387, 1211-1226.	13.7	480
14	Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant <i>Mycobacterium tuberculosis</i> . Science, 2009, 323, 1215-1218.	12.6	477
15	Pyrazinamide Inhibits Trans-Translation in <i>Mycobacterium tuberculosis</i> . Science, 2011, 333, 1630-1632.	12.6	475
16	Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nature Genetics, 2015, 47, 242-249.	21.4	466
17	Neutrophils Are the Predominant Infected Phagocytic Cells in the Airways of Patients With Active Pulmonary TB. Chest, 2010, 137, 122-128.	0.8	444
18	SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 1797-1809.	3.2	437

#	Article	IF	Citations
19	Tuberculosis: What We Don't Know Can, and Does, Hurt Us. Science, 2010, 328, 852-856.	12.6	430
20	Compensatory ahpC Gene Expression in Isoniazid-Resistant Mycobacterium tuberculosis. Science, 1996, 272, 1641-1643.	12.6	411
21	Tuberculosis — metabolism and respiration in the absence of growth. Nature Reviews Microbiology, 2005, 3, 70-80.	28.6	403
22	Inhibition of a Mycobacterium tuberculosis -Ketoacyl ACP Synthase by Isoniazid. Science, 1998, 280, 1607-1610.	12.6	398
23	Elemental Analysis of <i>Mycobacterium avium </i> , <i>Mycobacterium tuberculosis </i> , and <i>Mycobacterium smegmatis </i> ,-Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell's Endosomal System. Journal of Immunology, 2005, 174, 1491-1500.	0.8	389
24	The association between sterilizing activity and drug distribution into tuberculosis lesions. Nature Medicine, 2015, 21, 1223-1227.	30.7	387
25	DnaE2 Polymerase Contributes to In Vivo Survival and the Emergence of Drug Resistance in Mycobacterium tuberculosis. Cell, 2003, 113, 183-193.	28.9	383
26	Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 431-436.	7.1	325
27	Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9677-9682.	7.1	314
28	The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10026-10031.	7.1	310
29	Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. Journal of Bacteriology, 1996, 178, 4484-4492.	2.2	309
30	The Stringent Response of <i>Mycobacterium tuberculosis</i> Is Required for Long-Term Survival. Journal of Bacteriology, 2000, 182, 4889-4898.	2.2	306
31	<i>Mycobacterium tuberculosis</i> Growth at the Cavity Surface: a Microenvironment with Failed Immunity. Infection and Immunity, 2003, 71, 7099-7108.	2.2	306
32	Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and Drug Resistance. Infection and Immunity, 2005, 73, 3492-3501.	2.2	306
33	The 16-kDa α-crystallin (Acr) protein ofMycobacterium tuberculosisis required for growth in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9578-9583.	7.1	300
34	Microenvironments in Tuberculous Granulomas Are Delineated by Distinct Populations of Macrophage Subsets and Expression of Nitric Oxide Synthase and Arginase Isoforms. Journal of Immunology, 2013, 191, 773-784.	0.8	292
35	Treatment of Tuberculosis. New England Journal of Medicine, 2015, 373, 2149-2160.	27.0	290
36	Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunological Reviews, 2015, 264, 288-307.	6.0	287

#	Article	IF	CITATIONS
37	The mechanism of action of PA-824. Communicative and Integrative Biology, 2009, 2, 215-218.	1.4	278
38	Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 2016, 22, 531-538.	30.7	273
39	HypervirulentM. tuberculosisW/Beijing Strains Upregulate Type I IFNs and Increase Expression of Negative Regulators of the Jak-Stat Pathway. Journal of Interferon and Cytokine Research, 2005, 25, 694-701.	1.2	267
40	Confronting the scientific obstacles to global control of tuberculosis. Journal of Clinical Investigation, 2008, 118, 1255-1265.	8.2	266
41	Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics, 2017, 49, 395-402.	21.4	258
42	The ongoing challenge of latent tuberculosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130437.	4.0	250
43	Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiology, 2012, 7, 823-837.	2.0	248
44	Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nature Medicine, 2016, 22, 1094-1100.	30.7	247
45	Mycolic Acid Structure Determines the Fluidity of the Mycobacterial Cell Wall. Journal of Biological Chemistry, 1996, 271, 29545-29551.	3.4	236
46	High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous Lesions. Analytical Chemistry, 2011, 83, 2112-2118.	6.5	235
47	Iron Acquisition and Metabolism by Mycobacteria. Journal of Bacteriology, 1999, 181, 4443-4451.	2.2	232
48	Virulence of SelectedMycobacterium tuberculosisClinical Isolates in the Rabbit Model of Meningitis Is Dependent on Phenolic Glycolipid Produced by the Bacilli. Journal of Infectious Diseases, 2005, 192, 98-106.	4.0	228
49	Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e75245.	2.5	223
50	<i>Mycobacterium tuberculosis</i> Catalase and Peroxidase Activities and Resistance to Oxidative Killing in Human Monocytes In Vitro. Infection and Immunity, 1999, 67, 74-79.	2.2	223
51	Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis. PLoS Pathogens, 2011, 7, e1002287.	4.7	221
52	The W-Beijing Lineage of Mycobacterium tuberculosis Overproduces Triglycerides and Has the DosR Dormancy Regulon Constitutively Upregulated. Journal of Bacteriology, 2007, 189, 2583-2589.	2.2	215
53	Rationally Designed Nucleoside Antibiotics That Inhibit Siderophore Biosynthesis of Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 2006, 49, 31-34.	6.4	214
54	Combinatorial Lead Optimization of $[1,2]$ -Diamines Based on Ethambutol as Potential Antituberculosis Preclinical Candidates. ACS Combinatorial Science, 2003, 5, 172-187.	3.3	205

#	Article	IF	CITATIONS
55	Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nature Chemical Biology, 2011, 7, 228-235.	8.0	202
56	Differential Monocyte Activation Underlies Strain-Specific Mycobacterium tuberculosis Pathogenesis. Infection and Immunity, 2004, 72, 5511-5514.	2.2	200
57	Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6625-6629.	7.1	193
58	Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet, The, 2012, 380, 1406-1417.	13.7	193
59	Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6630-6634.	7.1	190
60	A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1537-1549.	6.0	188
61	Hypoxic Response of Mycobacterium tuberculosis Studied by Metabolic Labeling and Proteome Analysis of Cellular and Extracellular Proteins. Journal of Bacteriology, 2002, 184, 3485-3491.	2.2	183
62	<i>Para</i> -Aminosalicylic Acid Acts as an Alternative Substrate of Folate Metabolism in <i>Mycobacterium tuberculosis</i> . Science, 2013, 339, 88-91.	12.6	178
63	The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microbes and Infection, 2000, 2, 659-669.	1.9	171
64	Dynamic Population Changes in Mycobacterium tuberculosis During Acquisition and Fixation of Drug Resistance in Patients. Journal of Infectious Diseases, 2012, 206, 1724-1733.	4.0	169
65	Phenoxazinone synthase: mechanism for the formation of the phenoxazinone chromophore of actinomycin. Biochemistry, 1989, 28, 6323-6333.	2.5	168
66	A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19095-19100.	7.1	167
67	Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1827-1832.	7.1	167
68	Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nature Medicine, 2016, 22, 1090-1093.	30.7	166
69	The Biosynthesis of Cyclopropanated Mycolic Acids in Mycobacterium tuberculosis. Journal of Biological Chemistry, 1995, 270, 27292-27298.	3.4	162
70	The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Molecular Microbiology, 1998, 29, 1449-1458.	2.5	161
71	Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	159
72	Radiologic Responses in Cynomolgus Macaques for Assessing Tuberculosis Chemotherapy Regimens. Antimicrobial Agents and Chemotherapy, 2013, 57, 4237-4244.	3.2	156

#	Article	IF	CITATIONS
73	Pharmacokinetic Evaluation of the Penetration of Antituberculosis Agents in Rabbit Pulmonary Lesions. Antimicrobial Agents and Chemotherapy, 2012, 56, 446-457.	3.2	154
74	Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2008, 283, 19329-19341.	3.4	152
75	Unique Mechanism of Action of the Thiourea Drug Isoxyl on Mycobacterium tuberculosis. Journal of Biological Chemistry, 2003, 278, 53123-53130.	3.4	145
76	Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of Rifampicin in Liver Tissues. Analytical Chemistry, 2016, 88, 2392-2398.	6.5	145
77	The Role of MmpL8 in Sulfatide Biogenesis and Virulence of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2004, 279, 21257-21265.	3.4	142
78	A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12828-12833.	7.1	140
79	Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Medicine, 2019, 16, e1002773.	8.4	139
80	Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Molecular Microbiology, 2000, 38, 514-525.	2.5	134
81	Age and the epidemiology and pathogenesis of tuberculosis. Lancet, The, 2010, 375, 1852-1854.	13.7	132
82	Mutations in <i>gidB</i> Confer Low-Level Streptomycin Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 2515-2522.	3.2	130
83	Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis. Clinical Infectious Diseases, 2014, 59, 1049-1063.	5.8	129
84	Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. New England Journal of Medicine, 2017, 377, 1043-1054.	27.0	129
85	Effects of Pyrazinamide on Fatty Acid Synthesis by Whole Mycobacterial Cells and Purified Fatty Acid Synthase I. Journal of Bacteriology, 2002, 184, 2167-2172.	2.2	128
86	Meropenem inhibits <scp>D</scp> , <scp>D</scp> â€earboxypeptidase activity in <i><scp>M</scp>ycobacterium tuberculosis</i> . Molecular Microbiology, 2012, 86, 367-381.	2.5	128
87	Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression. PLoS Pathogens, 2011, 7, e1002264.	4.7	127
88	Proteasomal Protein Degradation in Mycobacteria Is Dependent upon a Prokaryotic Ubiquitin-like Protein. Journal of Biological Chemistry, 2009, 284, 3069-3075.	3.4	126
89	PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Science Translational Medicine, 2014, 6, 265ra166.	12.4	126
90	The Three RelE Homologs of <i>Mycobacterium tuberculosis</i> Have Individual, Drug-Specific Effects on Bacterial Antibiotic Tolerance. Journal of Bacteriology, 2010, 192, 1279-1291.	2.2	125

#	Article	IF	Citations
91	Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochemical Pharmacology, 2000, 59, 221-231.	4.4	124
92	Pathway-Selective Sensitization of Mycobacterium tuberculosis for Target-Based Whole-Cell Screening. Chemistry and Biology, 2012, 19, 844-854.	6.0	123
93	A High-Throughput Screen To Identify Inhibitors of ATP Homeostasis in Non-replicating <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2012, 7, 1190-1197.	3.4	123
94	Prospects for Clinical Introduction of Nitroimidazole Antibiotics for the Treatment of Tuberculosis. Current Pharmaceutical Design, 2004, 10, 3239-3262.	1.9	123
95	Prospects for new antitubercular drugs. Current Opinion in Microbiology, 2004, 7, 460-465.	5.1	122
96	Nucleoid Condensation in Escherichia coli That Express a Chlamydial Histone Homolog. Science, 1992, 256, 377-379.	12.6	119
97	Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 396, 190-190.	27.8	119
98	Inhibition of Siderophore Biosynthesis in <i>Mycobacterium tuberculosis</i> with Nucleoside Bisubstrate Analogues: Structureâ''Activity Relationships of the Nucleobase Domain of 5′- <i>O</i> -[<i>N</i> -(Salicyl)sulfamoyl]adenosine. Journal of Medicinal Chemistry, 2008, 51, 5349-5370.	6.4	118
99	PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Science Translational Medicine, 2014, 6, 265ra167.	12.4	116
100	Respiratory Flexibility in Response to Inhibition of Cytochrome <i>c</i> Oxidase in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6962-6965.	3.2	116
101	Biochemical and Genetic Data Suggest that InhA Is Not the Primary Target for Activated Isoniazid in Mycobacterium tuberculosis. Journal of Infectious Diseases, 1996, 174, 1085-1090.	4.0	115
102	PE/PPE proteins mediate nutrient transport across the outer membrane of <i>Mycobacterium tuberculosis</i> . Science, 2020, 367, 1147-1151.	12.6	110
103	Metronidazole prevents reactivation of latent <i>Mycobacterium tuberculosis</i> infection in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14188-14193.	7.1	109
104	Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus). Infection and Immunity, 2013, 81, 2909-2919.	2,2	107
105	Phenoxazinone synthase: enzymatic catalysis of an aminophenol oxidative cascade. Journal of the American Chemical Society, 1988, 110, 3333-3334.	13.7	104
106	Structureâ ⁻ 'Activity Relationships of Antitubercular Nitroimidazoles. 1. Structural Features Associated with Aerobic and Anaerobic Activities of 4- and 5-Nitroimidazoles. Journal of Medicinal Chemistry, 2009, 52, 1317-1328.	6.4	101
107	Interpreting cell wall 'virulence factors' of Mycobacterium tuberculosis. Trends in Microbiology, 2001, 9, 237-241.	7.7	100
108	A novel <scp>F₄₂₀</scp> â€dependent antiâ€oxidant mechanism protects <i><scp>M</scp>ycobacterium tuberculosis</i> against oxidative stress and bactericidal agents. Molecular Microbiology, 2013, 87, 744-755.	2.5	99

#	Article	IF	CITATIONS
109	Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunology, 2018, 11, 462-473.	6.0	99
110	Drug sensitivity and environmental adaptation of myocobacterial cell wall components. Trends in Microbiology, 1996, 4, 275-281.	7.7	97
111	Targeting the Formation of the Cell Wall Core of M. tuberculosis. Infectious Disorders - Drug Targets, 2007, 7, 182-202.	0.8	97
112	Antimycobacterial natural products: synthesis and preliminary biological evaluation of the oxazole-containing alkaloid texaline. Tetrahedron Letters, 2005, 46, 7355-7357.	1.4	96
113	Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E964-E973.	7.1	96
114	A Point Mutation in the mma3 Gene Is Responsible for Impaired Methoxymycolic Acid Production in Mycobacterium bovis BCG Strains Obtained after 1927. Journal of Bacteriology, 2000, 182, 3394-3399.	2.2	95
115	Mycobacterium tuberculosisInhibits Maturation of Human Monocyteâ€Derived Dendritic Cells In Vitro. Journal of Infectious Diseases, 2003, 188, 257-266.	4.0	95
116	The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biology, 2017, 18, 71.	8.8	95
117	Extensively Drug-Resistant Tuberculosis in South Korea: Risk Factors and Treatment Outcomes among Patients at a Tertiary Referral Hospital. Clinical Infectious Diseases, 2008, 46, 42-49.	5.8	94
118	The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis, 2002, 82, 149-160.	1.9	93
119	A medicinal chemists' guide to the unique difficulties of lead optimization for tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4741-4750.	2.2	93
120	Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis. EBioMedicine, 2015, 2, 1627-1633.	6.1	93
121	The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respiratory Medicine, the, 2019, 7, 820-826.	10.7	92
122	Infection Dynamics and Response to Chemotherapy in a Rabbit Model of Tuberculosis using [¹⁸ F]2-Fluoro-Deoxy- <scp>d</scp> -Glucose Positron Emission Tomography and Computed Tomography. Antimicrobial Agents and Chemotherapy, 2012, 56, 4391-4402.	3.2	89
123	Meropenem-Clavulanic Acid Shows Activity against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2012, 56, 3384-3387.	3.2	89
124	Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discovery Today, 2012, 17, 514-521.	6.4	87
125	Sensititre MYCOTB MIC Plate for Testing Mycobacterium tuberculosis Susceptibility to First- and Second-Line Drugs. Antimicrobial Agents and Chemotherapy, 2014, 58, 11-18.	3.2	86
126	MMAS-1, the Branch Point Between cis- and trans-Cyclopropane-containing Oxygenated Mycolates in Mycobacterium tuberculosis. Journal of Biological Chemistry, 1997, 272, 10041-10049.	3.4	85

#	Article	IF	Citations
127	5 - <i>O</i> -[(<i>N</i> -Acyl)sulfamoyl]adenosines as Antitubercular Agents that Inhibit MbtA:  An Adenylation Enzyme Required for Siderophore Biosynthesis of the Mycobactins. Journal of Medicinal Chemistry, 2007, 50, 6080-6094.	6.4	85
128	Fitness costs of rifampicin resistance in $\langle scp \rangle \langle i \rangle M \langle i \rangle \langle scp \rangle \langle i \rangle y$ cobacterium tuberculosis $\langle i \rangle$ are amplified under conditions of nutrient starvation and compensated by mutation in the $\hat{l}^2 \hat{a} \in \hat{l}^2$ subunit of $\langle scp \rangle RNA \langle scp \rangle polymerase$. Molecular Microbiology, 2014, 91, 1106-1119.	2.5	85
129	Inhibition of Siderophore Biosynthesis by 2-Triazole Substituted Analogues of 5′-⟨i⟩O⟨/i⟩-[⟨i⟩N⟨/i⟩-(Salicyl)sulfamoyl]adenosine: Antibacterial Nucleosides Effective against ⟨i⟩Mycobacterium tuberculosis⟨/i⟩. Journal of Medicinal Chemistry, 2008, 51, 7495-7507.	6.4	83
130	Polymorphisms Associated with Resistance and Cross-Resistance to Aminoglycosides and Capreomycin in <i>Mycobacterium tuberculosis</i> Isolates from South Korean Patients with Drug-Resistant Tuberculosis. Journal of Clinical Microbiology, 2010, 48, 402-411.	3.9	83
131	Expansion of the mycobacterial "PUPylome― Molecular BioSystems, 2010, 6, 376-385.	2.9	83
132	Bisubstrate Adenylation Inhibitors of Biotin Protein Ligase from Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1432-1441.	6.0	83
133	Structureâ°'Activity Relationships of Antitubercular Nitroimidazoles. 2. Determinants of Aerobic Activity and Quantitative Structureâ°'Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 1329-1344.	6.4	82
134	Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nature Communications, 2019, 10, 4970.	12.8	82
135	Defining the Mode of Action of Tetramic Acid Antibacterials Derived from Pseudomonas aeruginosa Quorum Sensing Signals. Journal of the American Chemical Society, 2009, 131, 14473-14479.	13.7	80
136	Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from Mycobacterium tuberculosis Involved in Bioreductive Activation of PA-824. Structure, 2012, 20, 101-112.	3.3	80
137	Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Scientific Reports, 2015, 5, 17507.	3.3	80
138	Structureâ [^] Activity Relationships at the 5-Position of Thiolactomycin:Â An Intact (5R)-Isoprene Unit Is Required for Activity against the Condensing Enzymes fromMycobacteriumtuberculosisandEscherichiacoli. Journal of Medicinal Chemistry, 2006, 49, 159-171.	6.4	79
139	Antitubercular Nucleosides That Inhibit Siderophore Biosynthesis:Â SAR of the Glycosyl Domain. Journal of Medicinal Chemistry, 2006, 49, 7623-7635.	6.4	78
140	Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis, 2012, 92, 407-416.	1.9	78
141	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
142	Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. Journal of Bacteriology, 1993, 175, 4274-4281.	2.2	76
143	Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium. Molecular Microbiology, 1998, 27, 1223-1233.	2.5	76
144	Top down characterization of secreted proteins from Mycobacterium tuberculosis by electron capture dissociation mass spectrometry. Journal of the American Society for Mass Spectrometry, 2003, 14, 253-261.	2.8	76

#	Article	IF	Citations
145	BacA, an ABC Transporter Involved in Maintenance of Chronic Murine Infections with <i>Mycobacterium tuberculosis </i> i>. Journal of Bacteriology, 2009, 191, 477-485.	2.2	76
146	Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathogens, 2018, 14, e1007223.	4.7	75
147	Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Molecular Microbiology, 1993, 9, 273-283.	2.5	74
148	Genetic Diversity of <i>Mycobacterium tuberculosis</i> Isolates from a Tertiary Care Tuberculosis Hospital in South Korea. Journal of Clinical Microbiology, 2010, 48, 387-394.	3.9	73
149	Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infectious Diseases, 2015, 1, 203-214.	3.8	71
150	Impact of Diabetes and Smoking on Mortality in Tuberculosis. PLoS ONE, 2013, 8, e58044.	2.5	71
151	Substrate specificity of the deazaflavinâ€dependent nitroreductase from <i>Mycobacteriumâ€ftuberculosis</i> responsible for the bioreductive activation of bicyclic nitroimidazoles. FEBS Journal, 2012, 279, 113-125.	4.7	70
152	The present state of the tuberculosis drug development pipeline. Current Opinion in Pharmacology, 2018, 42, 81-94.	3.5	70
153	Linezolid for XDR-TB â€" Final Study Outcomes. New England Journal of Medicine, 2015, 373, 290-291.	27.0	69
154	Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 3903-3909.	3.2	67
155	Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design. Cell, 2018, 175, 1045-1058.e16.	28.9	67
156	Structure–activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2013, 21, 6385-6397.	3.0	66
157	The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes and Infection, 2017, 19, 177-192.	1.9	66
158	Design, Synthesis, and Biological Evaluation of \hat{l}^2 -Ketosulfonamide Adenylation Inhibitors as Potential Antitubercular Agents. Organic Letters, 2006, 8, 4707-4710.	4.6	65
159	Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2011, 22, 1409-1419.	2.8	65
160	Desacetyluvaricin from Uvaria accuminata, Configuration of Uvaricin at C-36. Journal of Natural Products, 1985, 48, 644-645.	3.0	63
161	New horizons in the treatment of tuberculosis. Biochemical Pharmacology, 1997, 54, 1165-1172.	4.4	62
162	Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines, analogues of PA-824. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2256-2262.	2.2	62

#	Article	IF	CITATIONS
163	Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 958-968.	3.8	62
164	The Biosynthesis of Mycolic Acids in Mycobacterium tuberculosis. Journal of Biological Chemistry, 1998, 273, 21282-21290.	3.4	61
165	Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1257-1262.	7.1	61
166	Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Molecular Medicine, 2012, 4, 27-37.	6.9	61
167	A Sterilizing Tuberculosis Treatment Regimen Is Associated with Faster Clearance of Bacteria in Cavitary Lesions in Marmosets. Antimicrobial Agents and Chemotherapy, 2015, 59, 4181-4189.	3.2	59
168	Cell Wall Structure of a Mutant of Mycobacterium smegmatis Defective in the Biosynthesis of Mycolic Acids. Journal of Biological Chemistry, 2000, 275, 7224-7229.	3.4	57
169	In Vivo Phenotypic Dominance in Mouse Mixed Infections withMycobacterium tuberculosisClinical Isolates. Journal of Infectious Diseases, 2005, 192, 600-606.	4.0	57
170	MAIT cell-directed therapy of Mycobacterium tuberculosis infection. Mucosal Immunology, 2021, 14, 199-208.	6.0	57
171	AhpC, oxidative stress and drug resistance in <i>Mycobacterium tuberculosis</i> . BioFactors, 1999, 10, 211-217.	5.4	55
172	The chemical biology of new drugs in the development for tuberculosis. Current Opinion in Chemical Biology, 2010, 14, 456-466.	6.1	55
173	Changes in inflammatory protein and lipid mediator profiles persist after antitubercular treatment of pulmonary and extrapulmonary tuberculosis: A prospective cohort study. Cytokine, 2019, 123, 154759.	3.2	55
174	Development of a Selective Activity-Based Probe for Adenylating Enzymes: Profiling MbtA Involved in Siderophore Biosynthesis from <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2012, 7, 1653-1658.	3.4	54
175	Structure–activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorganic and Medicinal Chemistry, 2013, 21, 114-126.	3.0	53
176	The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions. Journal of Biological Chemistry, 2014, 289, 25041-25053.	3.4	52
177	Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion. Microbiology (United Kingdom), 2007, 153, 529-540.	1.8	51
178	Susceptibility of Mycobacterium tuberculosis Cytochrome $\langle i \rangle$ bd $\langle i \rangle$ Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome $\langle i \rangle$ c $\langle i \rangle$. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	49
179	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and ⟨i⟩Mycobacterium tuberculosis⟨ i⟩: Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	3.8	49
180	Rapid Detection of Fluoroquinolone-Resistant and Heteroresistant Mycobacterium tuberculosis by Use of Sloppy Molecular Beacons and Dual Melting-Temperature Codes in a Real-Time PCR Assay. Journal of Clinical Microbiology, 2011, 49, 932-940.	3.9	48

#	Article	IF	Citations
181	Frequency of adverse reactions to first- and second-line anti-tuberculosis chemotherapy in a Korean cohort. International Journal of Tuberculosis and Lung Disease, 2012, 16, 961-966.	1.2	48
182	Non-Nucleoside Inhibitors of BasE, an Adenylating Enzyme in the Siderophore Biosynthetic Pathway of the Opportunistic Pathogen <i>Acinetobacter baumannii</i> 2385-2405.	6.4	48
183	Predictors of pulmonary tuberculosis treatment outcomes in South Korea: a prospective cohort study, 2005-2012. BMC Infectious Diseases, 2014, 14, 360.	2.9	48
184	Mycobacterium tuberculosis in the post-genomic age. Current Opinion in Microbiology, 2001, 4, 28-34.	5.1	47
185	Detection of Isoniazid-, Fluoroquinolone-, Amikacin-, and Kanamycin-Resistant Tuberculosis in an Automated, Multiplexed 10-Color Assay Suitable for Point-of-Care Use. Journal of Clinical Microbiology, 2017, 55, 183-198.	3.9	47
186	Analysis of the Lipids of Mycobacterium tuberculosis. , 2001, 54, 229-245.		46
187	Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics. Tuberculosis, 2013, 93, 301-307.	1.9	46
188	Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2015, 58, 5459-5475.	6.4	46
189	Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection <i>In Vivo</i> by a Mechanism Dependent on T Lymphocytes. MBio, 2016, 7, .	4.1	44
190	<scp>TB</scp> drug development: immunology at the table. Immunological Reviews, 2015, 264, 308-318.	6.0	43
191	Current and future treatments for tuberculosis. BMJ, The, 2020, 368, m216.	6.0	43
192	Mycobacterium leprae Is Naturally Resistant to PA-824. Antimicrobial Agents and Chemotherapy, 2006, 50, 3350-3354.	3.2	42
193	Functional Role of Methylation of G518 of the 16S rRNA 530 Loop by GidB in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 6311-6318.	3.2	42
194	Exploring Alternative Biomaterials for Diagnosis of Pulmonary Tuberculosis in HIV-Negative Patients by Use of the GeneXpert MTB/RIF Assay. Journal of Clinical Microbiology, 2013, 51, 4161-4166.	3.9	42
195	Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization. Bioorganic and Medicinal Chemistry, 2015, 23, 7240-7250.	3.0	41
196	Dynamic exometabolome analysis reveals active metabolic pathways in nonâ€replicating mycobacteria. Environmental Microbiology, 2015, 17, 4802-4815.	3.8	40
197	Long-acting formulations for the treatment of latent tuberculous infection: opportunities and challenges. International Journal of Tuberculosis and Lung Disease, 2018, 22, 125-132.	1.2	40
198	Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC). PLoS ONE, 2016, 11, e0146658.	2.5	40

#	Article	IF	Citations
199	Diversity in the Chlamydia trachomatis histone homologue Hc2. Gene, 1993, 132, 137-141.	2.2	39
200	Clinical Pharmacology and Lesion Penetrating Properties of Second- and Third-Line Antituberculous Agents Used in the Management of Multidrug-Resistant (MDR) and Extensively-Drug Resistant (XDR) Tuberculosis. Current Clinical Pharmacology, 2010, 5, 96-114.	0.6	39
201	Structure–Activity Relationships of Antitubercular Nitroimidazoles. 3. Exploration of the Linker and Lipophilic Tail of ((⟨i⟩S⟨ i⟩)-2-Nitro-6,7-dihydro-5⟨i⟩H⟨ i⟩-imidazo[2,1-⟨i⟩b⟨ i⟩][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyl)amine (6-Amino PA-824) Journal of Medicinal Chemistry, 2011, 54, 5639-5659.	6.4	38
202	Rapid, High-Throughput Detection of Rifampin Resistance and Heteroresistance in Mycobacterium tuberculosis by Use of Sloppy Molecular Beacon Melting Temperature Coding. Journal of Clinical Microbiology, 2012, 50, 2194-2202.	3.9	38
203	Bioluminescent Reporters for Rapid Mechanism of Action Assessment in Tuberculosis Drug Discovery. Antimicrobial Agents and Chemotherapy, 2016, 60, 6748-6757.	3.2	38
204	Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of <i>M. tuberculosis</i> to bedaquiline. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19646-19651.	7.1	38
205	Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Frontiers in Cellular and Infection Microbiology, 2021, 11, 611304.	3.9	38
206	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	38
207	SAR and identification of 2-(quinolin-4-yloxy)acetamides as Mycobacterium tuberculosis cytochrome bc ₁ inhibitors. MedChemComm, 2016, 7, 2122-2127.	3.4	36
208	Selective small molecule inhibitor of the <i>Mycobacterium tuberculosis</i> fumarate hydratase reveals an allosteric regulatory site. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7503-7508.	7.1	36
209	Bacterial Loads Measured by the Xpert MTB/RIF Assay as Markers of Culture Conversion and Bacteriological Cure in Pulmonary TB. PLoS ONE, 2016, 11, e0160062.	2.5	35
210	Mechanism-based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in <i>Mycobaterium tuberculosis</i> Journal of the American Chemical Society, 2011, 133, 18194-18201.	13.7	34
211	Inactivation of theMycobacterium tuberculosis Nramporthologue (mntH) does not affect virulence in a mouse model of tuberculosis. FEMS Microbiology Letters, 2002, 207, 81-86.	1.8	33
212	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	1.9	33
213	Molecular degree of perturbation of plasma inflammatory markers associated with tuberculosis reveals distinct disease profiles between Indian and Chinese populations. Scientific Reports, 2019, 9, 8002.	3.3	33
214	ESI-MS Assay of M. tuberculosis Cell Wall Antigen 85 Enzymes Permits Substrate Profiling and Design of a Mechanism-Based Inhibitor. Journal of the American Chemical Society, 2011, 133, 13232-13235.	13.7	32
215	Genotypic Susceptibility Testing of Mycobacterium tuberculosis Isolates for Amikacin and Kanamycin Resistance by Use of a Rapid Sloppy Molecular Beacon-Based Assay Identifies More Cases of Low-Level Drug Resistance than Phenotypic Lowenstein-Jensen Testing. Journal of Clinical Microbiology, 2015, 53, 43-51.	3.9	32
216	Linezolid resistance in patients with drug-resistant TB and treatment failure in South Africa. Journal of Antimicrobial Chemotherapy, 2019, 74, 2377-2384.	3.0	32

#	Article	lF	Citations
217	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
218	Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
219	Lessons from Seven Decades of Antituberculosis Drug Discovery. Current Topics in Medicinal Chemistry, 2011, 11, 1216-1225.	2.1	29
220	Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. Annals of Biomedical Engineering, 2016, 44, 863-872.	2.5	29
221	Discovery and Structure–Activity-Relationship Study of <i>N</i> -Alkyl-5-hydroxypyrimidinone Carboxamides as Novel Antitubercular Agents Targeting Decaprenylphosphoryl-β- <scp>d</scp> -ribose 2′-Oxidase. Journal of Medicinal Chemistry, 2018, 61, 9952-9965.	6.4	29
222	Activating Mucosal-Associated Invariant T Cells Induces a Broad Antitumor Response. Cancer Immunology Research, 2021, 9, 1024-1034.	3.4	29
223	Quantitative 18F-FDG PET-CT scan characteristics correlate with tuberculosis treatment response. EJNMMI Research, 2020, 10, 8.	2.5	27
224	Investigation and Conformational Analysis of Fluorinated Nucleoside Antibiotics Targeting Siderophore Biosynthesis. Journal of Organic Chemistry, 2015, 80, 4835-4850.	3.2	26
225	Mechanisms of isoniazid resistance in Mycobacterium tuberculosis. Drug Resistance Updates, 1998, 1, 128-134.	14.4	25
226	Unorthodox Approach to the Development of a New Antituberculosis Therapy. New England Journal of Medicine, 2009, 360, 2466-2467.	27.0	25
227	Improved rapid molecular diagnosis of multidrug-resistant tuberculosis using a new reverse hybridization assay, REBA MTB-MDR. Journal of Medical Microbiology, 2011, 60, 1447-1454.	1.8	25
228	Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Science Translational Medicine, 2021, 13 , .	12.4	25
229	Partial Complementation of Sinorhizobium meliloti bacA Mutant Phenotypes by the Mycobacterium tuberculosis BacA Protein. Journal of Bacteriology, 2013, 195, 389-398.	2.2	24
230	Fragment-Sized EthR Inhibitors Exhibit Exceptionally Strong Ethionamide Boosting Effect in Whole-Cell <i>Mycobacterium tuberculosis</i> Assays. ACS Chemical Biology, 2017, 12, 1390-1396.	3.4	24
231	Linking High-Throughput Screens to Identify MoAs and Novel Inhibitors of <i>Mycobacterium tuberculosis</i> Dihydrofolate Reductase. ACS Chemical Biology, 2017, 12, 2448-2456.	3.4	24
232	Mycobacterium smegmatis: an absurd model for tuberculosis?. Trends in Microbiology, 2001, 9, 473-474.	7.7	23
233	Is the mycobacterial cell wall a hopeless drug target for latent tuberculosis?. Drug Discovery Today Disease Mechanisms, 2006, 3, 237-245.	0.8	23
234	Association of Antigen-Stimulated Release of Tumor Necrosis Factor-Alpha in Whole Blood with Response to Chemotherapy in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Respiration, 2010, 80, 275-284.	2.6	23

#	Article	IF	Citations
235	Pharmacokinetics-Pharmacodynamics Analysis of Bicyclic 4-Nitroimidazole Analogs in a Murine Model of Tuberculosis. PLoS ONE, 2014, 9, e105222.	2.5	23
236	Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. Mucosal Immunology, 2021, 14, 1055-1066.	6.0	23
237	Mutations in Extensively Drugâ€Resistant <i>Mycobacterium tuberculosis</i> That Do Not Code for Known Drugâ€Resistance Mechanisms. Journal of Infectious Diseases, 2010, 201, 881-888.	4.0	22
238	Some Nigerian anti-tuberculosis ethnomedicines: A preliminary efficacy assessment. Journal of Ethnopharmacology, 2014, 155, 524-532.	4.1	22
239	NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans. Scientific Reports, 2017, 7, 8853.	3.3	22
240	Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure–Activity Relationship and Target Identification Studies. Journal of Medicinal Chemistry, 2017, 60, 10118-10134.	6.4	22
241	Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial. Gates Open Research, 2017, 1, 9.	1.1	22
242	Rhabdomyolysis in a Patient Treated With Linezolid for Extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases, 2012, 54, 1624-1627.	5.8	21
243	Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product. Journal of the American Chemical Society, 2021, 143, 8056-8068.	13.7	20
244	Evaluation of the diagnostic utility of a whole-blood interferon- \hat{I}^3 assay for determining the risk of exposure to Mycobacterium tuberculosis in Bacille Calmette-Guerin (BCG)-vaccinated individuals. Diagnostic Microbiology and Infectious Disease, 2008, 61, 181-186.	1.8	19
245	The impact of social conditions on patient adherence to pulmonary tuberculosis treatment. International Journal of Tuberculosis and Lung Disease, 2016, 20, 948-954.	1.2	19
246	A low-carb diet for a high-octane pathogen. Nature Medicine, 2005, 11, 599-600.	30.7	18
247	2-Aryl-8-aza-3-deazaadenosine analogues of $5\hat{a}$ €²-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2016, 24, 3133-3143.	3.0	18
248	Inhibition of Mycobacterium tuberculosis AhpD, an Element of the Peroxiredoxin Defense against Oxidative Stress. Antimicrobial Agents and Chemotherapy, 2004, 48, 2424-2430.	3.2	17
249	The Medicinal Chemistry of Tuberculosis Chemotherapy. Topics in Medicinal Chemistry, 2011, , 47-124.	0.8	17
250	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
251	The Specificity of Methyl Transferases Involved in trans Mycolic Acid Biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Bioorganic Chemistry, 2001, 29, 164-177.	4.1	16
252	The effect of 5-substitution on the electrochemical behavior and antitubercular activity of PA-824. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 812-817.	2.2	16

#	Article	IF	CITATIONS
253	Detection of stealthy small amphiphilic biomarkers. Journal of Microbiological Methods, 2014, 103, 112-117.	1.6	16
254	Molecular insights into the binding of coenzyme <scp>F₄₂₀</scp> to the conserved protein <scp>R</scp> v1155 from <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> Science, 2015, 24, 729-740.	7.6	16
255	A semi-automatic technique to quantify complex tuberculous lung lesions on 18F-fluorodeoxyglucose positron emission tomography/computerised tomography images. EJNMMI Research, 2018, 8, 55.	2.5	16
256	Radiological and functional evidence of the bronchial spread of tuberculosis: an observational analysis. Lancet Microbe, The, 2021, 2, e518-e526.	7.3	16
257	Spectrum of latent tuberculosis â€" existing tests cannot resolve the underlying phenotypes: author's reply. Nature Reviews Microbiology, 2010, 8, 242-242.	28.6	15
258	Getting the iron out. Nature Chemical Biology, 2005, 1, 127-128.	8.0	14
259	Rv2607 from Mycobacterium tuberculosis Is a Pyridoxine 5′-Phosphate Oxidase with Unusual Substrate Specificity. PLoS ONE, 2011, 6, e27643.	2.5	14
260	C4-Alkylthiols with activity against Moraxella catarrhalis and Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 2011, 19, 6842-6852.	3.0	14
261	Interferon-gamma response to the treatment of active pulmonary and extra-pulmonary tuberculosis. International Journal of Tuberculosis and Lung Disease, 2017, 21, 1145-1149.	1.2	13
262	Role of Chemical Biology in Tuberculosis Drug Discovery and Diagnosis. ACS Infectious Diseases, 2018, 4, 458-466.	3.8	13
263	1,3-Diarylpyrazolyl-acylsulfonamides as Potent Anti-tuberculosis Agents Targeting Cell Wall Biosynthesis in <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2021, 64, 12790-12807.	6.4	13
264	A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculous Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0221221.	3.2	13
265	Identification of \hat{I}^2 -Lactams Active against <i>Mycobacterium tuberculosis</i> by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infectious Diseases, 2022, 8, 557-573.	3.8	13
266	Novel route to 5-position vinyl derivatives of thiolactomycin: olefination versus deformylation. Tetrahedron Letters, 2006, 47, 3447-3451.	1.4	12
267	Lesion Penetration and Activity Limit the Utility of Second-Line Injectable Agents in Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050621.	3.2	12
268	Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance. PLoS ONE, 2015, 10, e0126257.	2.5	12
269	Timing is everything for compassionate use of delamanid. Nature Medicine, 2015, 21, 211-211.	30.7	11
270	Transmission of (i) Mycobacterium tuberculosis (i) From Patients Who Are Nucleic Acid Amplification Test Negative. Clinical Infectious Diseases, 2018, 67, 1653-1659.	5.8	11

#	Article	IF	Citations
271	DNA-Dependent Binding of Nargenicin to DnaE1 Inhibits Replication in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2022, 8, 612-625.	3.8	11
272	DNA microarrays: translational tools for understanding the biology of Mycobacterium tuberculosis. Trends in Microbiology, 2000, 8, 209-210.	7.7	10
273	Treatments of Multidrug-Resistant Tuberculosis: Light at the End of the Tunnel. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1142-1144.	5.6	10
274	Utility of the REBA MTB-rifa \hat{A}^{\otimes} assay for rapid detection of rifampicin resistant Mycobacterium Tuberculosis. BMC Infectious Diseases, 2013, 13, 478.	2.9	9
275	Drug discovery goes au naturel. Nature, 2014, 506, 436-437.	27.8	9
276	Inhibition of CorA-Dependent Magnesium Homeostasis Is Cidal in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
277	C4-Phenylthio \hat{l}^2 -lactams: Effect of the chirality of the \hat{l}^2 -lactam ring on antimicrobial activity. Bioorganic and Medicinal Chemistry, 2019, 27, 115050.	3.0	9
278	Targeting of Fumarate Hydratase from <i>Mycobacterium tuberculosis</i> Using Allosteric Inhibitors with a Dimeric-Binding Mode. Journal of Medicinal Chemistry, 2019, 62, 10586-10604.	6.4	9
279	Development and Optimization of Chromosomally-Integrated Fluorescent Mycobacterium tuberculosis Reporter Constructs. Frontiers in Microbiology, 2020, 11, 591866.	3.5	9
280	Structureâ€"Activity Relationships of Pyrazolo[1,5- <i>a</i>]pyrimidin-7(4 <i>H</i>)-ones as Antitubercular Agents. ACS Infectious Diseases, 2021, 7, 479-492.	3.8	9
281	Antitubercular 2-Pyrazolylpyrimidinones: Structure–Activity Relationship and Mode-of-Action Studies. Journal of Medicinal Chemistry, 2021, 64, 719-740.	6.4	9
282	Synthesis and Spectroscopic Differentiation of 2- and 4-Alkoxythio-tetronic Acids. Heterocycles, 2004, 63, 519.	0.7	9
283	Phylogenomic analysis of the diversity of graspetides and proteins involved in their biosynthesis. Biology Direct, 2022, 17, 7.	4.6	9
284	Quantification of small molecule organic acids from Mycobacterium tuberculosis culture supernatant using ion exclusion liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 3345-3350.	1.5	8
285	Synthesis of labeled meropenem for the analysis of M. tuberculosis transpeptidases. Tetrahedron Letters, 2010, 51, 197-200.	1.4	8
286	Metaplastic ossification in the cartilage of the bronchus of a patient with chronic multi-drug resistant tuberculosis: a case report. Journal of Medical Case Reports, 2010, 4, 156.	0.8	8
287	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	12.8	8
288	Comment on: Identification of antimicrobial activity among FDA-approved drugs for combating Mycobacterium abscessus and Mycobacterium chelonae. Journal of Antimicrobial Chemotherapy, 2012, 67, 252-253.	3.0	7

#	Article	IF	CITATIONS
289	â€~Imagination is more important than knowledge'. Trends in Microbiology, 2001, 9, 192.	7.7	6
290	A genome-wide sequence-independent comparative analysis of insertion–deletion polymorphisms in multiple Mycobacterium tuberculosis strains. Research in Microbiology, 2006, 157, 282-290.	2.1	6
291	Non-transpeptidase binding arylthioether \hat{l}^2 -lactams active against Mycobacterium tuberculosis and Moraxella catarrhalis. Bioorganic and Medicinal Chemistry, 2015, 23, 632-647.	3.0	6
292	New Tactics Against Tuberculosis. Scientific American, 2009, 300, 62-69.	1.0	5
293	Mycolic Acid/Cyclopropane Fatty Acid/Fatty Acid Biosynthesis and Health Relations., 2010,, 65-145.		5
294	More than just bugs in spit. Science, 2015, 348, 633-634.	12.6	5
295	Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chemical Biology, 2021, 28, 1180-1191.e20.	5.2	5
296	Tuberculosis – strategies towards anti-infectives for a chronic disease. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 491-496.	0.5	4
297	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>I</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	3.8	3
298	Signature required: The transcriptional response to tuberculosis. Journal of Experimental Medicine, 2021, 218, .	8.5	3
299	Next-generation therapeutics. Current Opinion in Chemical Biology, 2006, 10, 291-293.	6.1	2
300	A Convergent Synthesis of Chiral Diaminopimelic Acid Derived Substrates for Mycobacterial l,d-Transpeptidases. Synthesis, 2012, 44, 3043-3048.	2.3	2
301	Clifton E. Barry, III: TB's strategic opponent. Journal of Experimental Medicine, 2009, 206, 494-495.	8.5	1
302	The Death of the "Three Ms― ACS Infectious Diseases, 2015, 1, 578-579.	3.8	1
303	Chasing Koch's chimera. Lancet Infectious Diseases, The, 2013, 13, 289-291.	9.1	0
304	Major Global Killer Tamed by Hydrogen. ACS Central Science, 2015, 1, 286-288.	11.3	0
305	Oxazolidinones are essential in resistance-proof drug combinations in M. tuberculosis selected under in vitro conditions. International Journal of Infectious Diseases, 2018, 73, 129.	3.3	0
306	The development of new chemotherapeutics for multidrug-resistant tuberculosis. Resurgent and Emerging Infectious Diseases, 2000, , 241-252.	0.2	0

#	Article	IF	CITATIONS
307	Design of a nucleoside inhibitor of biotin protein ligase from Mycobacterium tuberculosis. , 2011, , .		O
308	Lessons from Seven Decades of Antituberculosis Drug Discovery. Current Topics in Medicinal Chemistry, 2011, 999, 1-10.	2.1	0