## Liang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3797139/publications.pdf Version: 2024-02-01



LIANC MANC

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Investigation and Improvement of Pushing Dislocation in Ceramsite Sand Three-Dimensional Printing.<br>3D Printing and Additive Manufacturing, 2023, 10, 289-297.                                                                                 | 2.9 | 1         |
| 2  | Microstructure Evolution and Toughening Mechanism of a Nb-18Si-5HfC Eutectic Alloy Created by Selective Laser Melting. Materials, 2022, 15, 1190.                                                                                                | 2.9 | 0         |
| 3  | Improvement of Microstructure and Mechanical Properties of Nearâ€Eutectic Al–Mg <sub>2</sub> Si<br>Alloys by Eu Addition. Advanced Engineering Materials, 2021, 23, 2001447.                                                                     | 3.5 | 7         |
| 4  | Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting. China Foundry, 2021, 18, 170-179.                                                                                   | 1.4 | 8         |
| 5  | Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718.<br>China Foundry, 2021, 18, 379-388.                                                                                                           | 1.4 | 3         |
| 6  | Evolution of Microstructure and Mechanical Properties in Al–Zn–Mg–Cu Alloy by Electric Pulse<br>Aging Treatment. Transactions of the Indian Institute of Metals, 2021, 74, 2835-2842.                                                            | 1.5 | 3         |
| 7  | A Comparative Study on Microstructure and Mechanical Properties of Tiâ€43/46Al–5Nb–0.1B Alloys<br>Modified by Mo. Advanced Engineering Materials, 2020, 22, 1901075.                                                                             | 3.5 | 6         |
| 8  | Microstructures and mechanical properties of Ti–44Al–5Nb–3Cr–1.5Zr–xMo–yB alloys. Journal of<br>Materials Research, 2020, 35, 2756-2764.                                                                                                         | 2.6 | 4         |
| 9  | Microstructural evolution of Al-Cu-Li alloys with different Li contents by coupling of near-rapid solidification and two-stage homogenization treatment. China Foundry, 2020, 17, 190-197.                                                       | 1.4 | 10        |
| 10 | Effect of hydrogen on interfacial reaction between Ti-6Al-4V alloy melt and graphite mold. Journal of<br>Materials Research and Technology, 2020, 9, 6933-6939.                                                                                  | 5.8 | 5         |
| 11 | Microstructural Optimization of Feâ€Rich Intermetallic in Al–12 wt% Si–2 wt% Fe alloys by Adding<br>Travelling Magnetic Fields. Advanced Engineering Materials, 2020, 22, 2000561.                                                               | 3.5 | 0         |
| 12 | Prediction Mechanical Strength of Sand Mold Samples Fabricated by Three-Dimensional Printing.<br>Materials Transactions, 2020, 61, 1620-1628.                                                                                                    | 1.2 | 2         |
| 13 | Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys. Rare Metals, 2019, 38, 840-847.                                                                                                                                          | 7.1 | 22        |
| 14 | Microstructure and Mechanical Properties of Bioâ€Inspired Ti/Al/Al <sub>f</sub> Multilayered<br>Composites. Advanced Engineering Materials, 2019, 21, 1800722.                                                                                   | 3.5 | 2         |
| 15 | Microstructures and properties of Nbâ $\in$ "Si-based alloys with B addition. Rare Metals, 2019, , 1.                                                                                                                                            | 7.1 | 0         |
| 16 | Effects of hydrogen on the interfacial reaction between Ti 6Al 4V alloy melt and Al2O3 ceramic shell.<br>International Journal of Hydrogen Energy, 2018, 43, 5225-5230.                                                                          | 7.1 | 3         |
| 17 | Creep Behavior of Highâ€Nb TiAl Alloy at 800–900 °C by Directional Solidification. Advanced Engineering<br>Materials, 2018, 20, 1700734                                                                                                          | 3.5 | 6         |
| 18 | Efficient Melt Stirring Induced by the Coupled Effects of Alternating Magnetic Field and<br>Configuration of Cold Crucible. Metallurgical and Materials Transactions B: Process Metallurgy and<br>Materials Processing Science, 2018, 49, 28-33. | 2.1 | 1         |

LIANG WANG

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of Nb on Microstructure and Mechanical Properties of Ti42Al2.6C Alloys. Advanced<br>Engineering Materials, 2018, 20, 1701112.                                                                                                                                                         | 3.5 | 17        |
| 20 | Microstructure, Mechanical Properties, and Crack Propagation Behavior in High-Nb TiAl Alloys by<br>Directional Solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2018, 49, 4555-4564.                                                 | 2.2 | 39        |
| 21 | Nanometer-scale gradient atomic packing structure surrounding soft spots in metallic glasses. Npj<br>Computational Materials, 2018, 4, .                                                                                                                                                      | 8.7 | 37        |
| 22 | Effect of a Traveling Magnetic Field on Micropore Formation in Al-Cu Alloys. Metals, 2018, 8, 448.                                                                                                                                                                                            | 2.3 | 4         |
| 23 | Hydrogen induced softening and hardening for hot workability of (TiBÂ+ÂTiC)/Ti-6Al-4V composites.<br>International Journal of Hydrogen Energy, 2017, 42, 3380-3388.                                                                                                                           | 7.1 | 16        |
| 24 | Effects and mechanism of ultrasonic irradiation on solidification microstructure and mechanical properties of binary TiAl alloys. Ultrasonics Sonochemistry, 2017, 38, 120-133.                                                                                                               | 8.2 | 55        |
| 25 | Hydrogenation behavior of Ti–44Al–6Nb alloy and its effect on the microstructure and hot<br>deformability. Journal of Materials Research, 2017, 32, 1304-1315.                                                                                                                                | 2.6 | 1         |
| 26 | Design of (Nb, Mo)40Ti30Ni30 alloy membranes for combined enhancement of hydrogen permeability and embrittlement resistance. Scientific Reports, 2017, 7, 209.                                                                                                                                | 3.3 | 17        |
| 27 | Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and<br>Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible. Metallurgical and Materials<br>Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3345-3358. | 2.1 | 11        |
| 28 | Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition. Scientific Reports, 2016, 6, 27682.                                                                                                                            | 3.3 | 4         |
| 29 | On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni<br>peritectic alloy. Scientific Reports, 2016, 6, 24315.                                                                                                                                         | 3.3 | 5         |
| 30 | On migration of primary/peritectic interface during interrupted directional solidification of Sn-Ni peritectic alloy. Scientific Reports, 2016, 6, 24512.                                                                                                                                     | 3.3 | 8         |
| 31 | Effect of growth rate on microstructures and microhardness in directionally solidified<br>Ti–47Al–1.0W–0.5Si alloy. Journal of Materials Research, 2016, 31, 618-626.                                                                                                                         | 2.6 | 3         |
| 32 | Composition-dependent phase substitution in directionally solidified Sn-22at.%Ni peritectic alloy.<br>Journal of Materials Science, 2016, 51, 1512-1521.                                                                                                                                      | 3.7 | 14        |
| 33 | Effect of heat treatment on microstructure and mechanical properties of cast and directionally solidified high-Nb contained TiAl-based alloys. Journal of Materials Research, 2015, 30, 3331-3342.                                                                                            | 2.6 | 5         |
| 34 | Controllable 3D morphology and growth mechanism of quasicrystalline phase in directionally<br>solidified Al–Mn–Be alloy. Journal of Materials Research, 2014, 29, 2547-2555.                                                                                                                  | 2.6 | 8         |
| 35 | Faceted–nonfaceted growth transition and 3-D morphological evolution of primary<br>Al <sub>6</sub> Mn microcrystals in directionally solidified Al–3 at.% Mn alloy. Journal of Materials<br>Research, 2014, 29, 1256-1263.                                                                    | 2.6 | 18        |
| 36 | Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al–25at%Ni. Applied Physics A: Materials Science and Processing, 2014, 116, 1821-1831.                                                                  | 2.3 | 9         |

LIANG WANG

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of initial solid–liquid interface morphology on further microstructure evolution during directional solidification. Applied Physics A: Materials Science and Processing, 2013, 110, 443-451.                                          | 2.3 | 6         |
| 38 | Effect of peritectic reaction on the migration of secondary dendrite arms in the presence of tertiary<br>dendrites: analysis of a directionally solidified Sn–36Âat.%Ni peritectic alloy. Journal of Materials<br>Science, 2013, 48, 2608-2617. | 3.7 | 3         |
| 39 | Optimization of Processing Parameters for WC-11Co Cemented Carbide Doped with Nano-Crystalline<br>CeO2. Journal of Materials Engineering and Performance, 2013, 22, 112-117.                                                                    | 2.5 | 8         |
| 40 | Prediction of the solidification path of Al-4.37Cu-27.02Mg ternary eutectic alloy with a unified microsegregation model coupled with Thermo-Calc. International Journal of Materials Research, 2013, 104, 244-254.                              | 0.3 | 10        |
| 41 | Secondary dendrite arm migration caused by temperature gradient zone melting in the directionally solidified Sn–40 at.% Mn peritectic alloy. Journal of Materials Research, 2013, 28, 1196-1202.                                                | 2.6 | 3         |
| 42 | A lateral remelting phenomenon of the primary phase below the temperature of peritectic reaction in directionally solidified Cu–Ge alloys. Journal of Materials Research, 2013, 28, 3261-3269.                                                  | 2.6 | 11        |
| 43 | Primary dendrite distribution in directionally solidified Sn–36 at.% Ni peritectic alloy. Journal of<br>Materials Research, 2013, 28, 740-746.                                                                                                  | 2.6 | 10        |
| 44 | Two-phase separated growth and peritectic reaction during directional solidification of Cu–Ge peritectic alloys. Journal of Materials Research, 2013, 28, 1372-1377.                                                                            | 2.6 | 5         |
| 45 | INVESTIGATIONS ON DEFECT STRUCTURE AND LIGHT-INDUCED SCATTERING OF Mg:Ho:LiNbO3 WITH VARIOUS Mg2+ CONCENTRATION. Modern Physics Letters B, 2012, 26, 1250127.                                                                                   | 1.9 | 0         |
| 46 | Characterization of hydrogen-induced structural changes in Zr-based bulk metallic glasses using positron annihilation spectroscopy. Journal of Materials Research, 2012, 27, 2587-2592.                                                         | 2.6 | 4         |
| 47 | Isothermal Peritectic Coupled Growth in Directionally Solidified Cu-20ÂwtÂpct Sn Alloy. Metallurgical<br>and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4219-4223.                                          | 2.2 | 4         |
| 48 | Mechanical Properties and Thermal Shock Resistance of HVOF Sprayed NiCrAlY Coatings Without and<br>With Nano Ceria. Journal of Thermal Spray Technology, 2012, 21, 818-824.                                                                     | 3.1 | 26        |
| 49 | Directional Solidification of Ti6Al4V Ingots with an Electromagnetic Cold Crucible by Adjusting the<br>Meniscus. ISIJ International, 2012, 52, 1296-1300.                                                                                       | 1.4 | 4         |
| 50 | Study on in situ Al-Si functionally graded materials produced by traveling magnetic field. Science and Engineering of Composite Materials, 2012, 19, 209-214.                                                                                   | 1.4 | 4         |
| 51 | Effect of peritectic reaction on dendrite coarsening in directionally solidified Sn–36Âat.%Ni alloy.<br>Journal of Materials Science, 2012, 47, 6108-6117.                                                                                      | 3.7 | 20        |
| 52 | Tensile properties of an aluminum matrix composite reinforced by SnO2-coated Al18B4O33 whisker.<br>Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 1166-1170.                                                      | 1.0 | 0         |
| 53 | Deoxidation of Ti–Al intermetallics via hydrogen treatment. International Journal of Hydrogen<br>Energy, 2010, 35, 9214-9217.                                                                                                                   | 7.1 | 17        |
| 54 | Effect of hydrogen on hot deformation behaviors of TiAl alloys. International Journal of Hydrogen<br>Energy, 2010, 35, 13322-13328.                                                                                                             | 7.1 | 35        |

LIANG WANG

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | In doping effect on optical properties in Zn:In:Fe:LiNbO <sub>3</sub> crystals. Crystal Research and Technology, 2009, 44, 754-758.                                                                                                      | 1.3 | 4         |
| 56 | A simple model for lamellar peritectic coupled growth with peritectic reaction. Science in China<br>Series G: Physics, Mechanics and Astronomy, 2007, 50, 442-450.                                                                       | 0.2 | 4         |
| 57 | Well-aligned in situ composites in directionally solidified Fe–Ni peritectic system. Applied Physics<br>Letters, 2006, 89, 231918.                                                                                                       | 3.3 | 19        |
| 58 | Evaporation loss of components during induction skull melting of Ti—13Al—29Nb—2·5Mo.<br>International Journal of Cast Metals Research, 2003, 16, 466-472.                                                                                | 1.0 | 1         |
| 59 | The critical pressure and impeding pressure of Al evaporation during induction skull melting processing of TiAl. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3249-3253.             | 2.2 | 12        |
| 60 | Molding of temperature field for the induction skull melting process of Ti-47Ni-9Nb. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2895-2902.                                         | 2.2 | 3         |
| 61 | Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium<br>aluminum alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials<br>Processing Science, 2000, 31, 837-844. | 2.1 | 21        |