Hubing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3796907/publications.pdf Version: 2024-02-01

HURING SHI

#	Article	IF	CITATIONS
1	The Evolution of Acquired Resistance to BRAFV600EÂkinase inhibitor Is Sustained by IGF1-Driven Tumor Vascular Remodeling. Journal of Investigative Dermatology, 2022, 142, 445-458.	0.3	11
2	Genome-wide CRISPR-cas9 knockout screening identifies GRB7 as a driver for MEK inhibitor resistance in KRAS mutant colon cancer. Oncogene, 2022, 41, 191-203.	2.6	37
3	Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Signal Transduction and Targeted Therapy, 2022, 7, 60.	7.1	31
4	Omicron-included mutation-induced changes in epitopes of SARS-CoV-2 spike protein and effectiveness assessments of current antibodies. Molecular Biomedicine, 2022, 3, 12.	1.7	12
5	A peptidic inhibitor for PD-1 palmitoylation targets its expression and functions. RSC Chemical Biology, 2021, 2, 192-205.	2.0	26
6	Specifically targeting Mtb cell-wall and TMM transporter: the development of MmpL3 inhibitors. Current Protein and Peptide Science, 2021, 22, 290-303.	0.7	4
7	Combination of MAPK inhibition with photothermal therapy synergistically augments the anti-tumor efficacy of immune checkpoint blockade. Journal of Controlled Release, 2021, 332, 194-209.	4.8	25
8	Pan-Cancer Analysis Reveals Alternative Splicing Characteristics Associated With Immune-Related Adverse Events Elicited by Checkpoint Immunotherapy. Frontiers in Pharmacology, 2021, 12, 797852.	1.6	8
9	Improvement of PD-1 Blockade Efficacy and Elimination of Immune-Related Gastrointestinal Adverse Effect by mTOR Inhibitor. Frontiers in Immunology, 2021, 12, 793831.	2.2	16
10	Editorial: Targeting the PD-1/PD-L1 Cancer Immune Evasion Axis: Challenges and Emerging Strategies. Frontiers in Pharmacology, 2020, 11, 591188.	1.6	1
11	Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene, 2020, 39, 7106-7113.	2.6	22
12	Integrin-Src-YAP1 signaling mediates the melanoma acquired resistance to MAPK and PI3K/mTOR dual targeted therapy. Molecular Biomedicine, 2020, 1, 12.	1.7	16
13	<p>Plasma Exosomal miR-146b-5p and miR-222-3p are Potential Biomarkers for Lymph Node Metastasis in Papillary Thyroid Carcinomas</p> . OncoTargets and Therapy, 2020, Volume 13, 1311-1319.	1.0	59
14	Long Non-coding RNAs: Emerging Roles in the Immunosuppressive Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 48.	1.3	63
15	BP[dG]-induced distortions to DNA polymerase and DNA duplex: A detailed mechanism of BP adducts blocking replication. Food and Chemical Toxicology, 2020, 140, 111325.	1.8	8
16	Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117.	0.8	22
17	A novel panâ€cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Cancer Science, 2019, 110, 2941-2959.	1.7	52
18	Management of Adverse Events in Cancer Patients Treated With PD-1/PD-L1 Blockade: Focus on Asian Populations. Frontiers in Pharmacology, 2019, 10, 726.	1.6	20

Нивінс Ѕні

#	Article	IF	CITATIONS
19	AIDE: annotation-assisted isoform discovery with high precision. Genome Research, 2019, 29, 2056-2072.	2.4	10
20	Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Frontiers in Immunology, 2019, 10, 990.	2.2	86
21	Theoretical insight into the photodeactivation pathway of the tetradentate Pt (II) complex with different inductive substituents. Applied Organometallic Chemistry, 2019, 33, e4879.	1.7	7
22	Immunotherapy: MAPKâ€Targeted Drug Delivered by a pHâ€Sensitive MSNP Nanocarrier Synergizes with PDâ€1 Blockade in Melanoma without Tâ€Cell Suppression (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970079.	7.8	0
23	Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nature Biomedical Engineering, 2019, 3, 306-317.	11.6	279
24	HIP1R targets PD-L1 to lysosomal degradation to alter T cell–mediated cytotoxicity. Nature Chemical Biology, 2019, 15, 42-50.	3.9	189
25	Inhibition of programmed cell death protein ligand-1 (PD-L1) by benzyl ether derivatives: analyses of conformational change, molecular recognition and binding free energy. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4801-4812.	2.0	15
26	MAPKâ€Targeted Drug Delivered by a pHâ€Sensitive MSNP Nanocarrier Synergizes with PDâ€1 Blockade in Melanoma without Tâ€Cell Suppression. Advanced Functional Materials, 2019, 29, 1806916.	7.8	34
27	Inhibition Mechanism of Indoleamine 2, 3-Dioxygenase 1 (IDO1) by Amidoxime Derivatives and Its Revelation in Drug Design: Comparative Molecular Dynamics Simulations. Frontiers in Molecular Biosciences, 2019, 6, 164.	1.6	5
28	A Designed Peptide Targets Two Types of Modifications of p53 with Anti-cancer Activity. Cell Chemical Biology, 2018, 25, 761-774.e5.	2.5	17
29	PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation. Oncolmmunology, 2017, 6, e1327494.	2.1	52
30	JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discovery, 2016, 2, 16028.	3.1	57
31	Tunable-Combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Cotargeting but Result in Melanoma Drug Addiction. Cancer Cell, 2015, 27, 240-256.	7.7	299
32	Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 2015, 520, 368-372.	13.7	389
33	Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance. Cell, 2015, 162, 1271-1285.	13.5	516
34	A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition. Cancer Discovery, 2014, 4, 69-79.	7.7	141
35	Detecting Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma. Methods in Molecular Biology, 2014, 1102, 163-174.	0.4	14
36	Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy. Cancer Discovery, 2014, 4, 80-93.	7.7	836

HUBING SHI

#	Article	IF	CITATIONS
37	Preexisting <i>MEK1</i> Exon 3 Mutations in <i>V600E/K BRAF</i> Melanomas Do Not Confer Resistance to BRAF Inhibitors. Cancer Discovery, 2012, 2, 414-424.	7.7	91
38	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	15.2	266
39	Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nature Communications, 2012, 3, 724.	5.8	567
40	RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature, 2011, 480, 387-390.	13.7	1,298
41	Combinatorial Treatments That Overcome PDGFRβ-Driven Resistance of Melanoma Cells to V600EB-RAF Inhibition. Cancer Research, 2011, 71, 5067-5074.	0.4	206
42	Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468, 973-977.	13.7	1,944