
Jizhang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3796786/publications.pdf Version: 2024-02-01

LIZHANC CHEN

#	Article	IF	CITATIONS
1	Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy, 2016, 25, 193-202.	8.2	287
2	A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon, 2019, 149, 1-18.	5.4	280
3	Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy, 2016, 21, 145-153.	8.2	254
4	Realizing an Allâ€Round Hydrogel Electrolyte toward Environmentally Adaptive Dendriteâ€Free Aqueous Zn–MnO ₂ Batteries. Advanced Materials, 2021, 33, e2007559.	11.1	250
5	Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials, 2022, 44, 57-65.	9.5	211
6	Anti-freezing flexible aqueous Zn–MnO ₂ batteries working at â^'35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 6828-6841.	5.2	196
7	High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A, 2019, 7, 26524-26532.	5.2	183
8	Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochimica Acta, 2010, 55, 6596-6600.	2.6	171
9	Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy, 2018, 53, 337-344.	8.2	143
10	Emerging Patterns of Hookworm Infection: Influence of Aging on the Intensity ofNecatorInfection in Hainan Province, People's Republic of China. Clinical Infectious Diseases, 2002, 35, 1336-1344.	2.9	142
11	Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. Journal of Power Sources, 2012, 200, 59-66.	4.0	138
12	Template-grown graphene/porous Fe2O3 nanocomposite: A high-performance anode material for pseudocapacitors. Nano Energy, 2015, 15, 719-728.	8.2	116
13	Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. Journal of Colloid and Interface Science, 2020, 577, 256-264.	5.0	103
14	Facile and scalable fabrication of three-dimensional Cu(OH) ₂ nanoporous nanorods for solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 17385-17391.	5.2	100
15	Simplified Synthesis of Fluoride-Free Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching toward High-Performance Electrochemical Capacitors. ACS Nano, 2022, 16, 2461-2470.	7.3	99
16	An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 8397-8409.	5.2	98
17	Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chemical Engineering Journal, 2022, 428, 131380.	6.6	76
18	Mesoporous TiO2–Sn@C core–shell microspheres for Li-ion batteries. Chemical Communications, 2013, 49, 2792.	2.2	74

#	Article	IF	CITATIONS
19	Evaluating biomass-derived hierarchically porous carbon as the positive electrode material for hybrid Na-ion capacitors. Journal of Power Sources, 2017, 342, 48-55.	4.0	74
20	Investigation of Na3V2(PO4)2O2F as a sodium ion battery cathode material: Influences of morphology and voltage window. Nano Energy, 2019, 60, 510-519.	8.2	69
21	Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors. Electrochimica Acta, 2018, 261, 198-205.	2.6	56
22	Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 475-481.	7.1	56
23	Flexible free-standing paper electrodes based on reduced graphene oxide/l̃-NaxV2O5•nH2O nanocomposite for high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 328, 135137.	2.6	54
24	Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. Journal of Energy Chemistry, 2021, 52, 377-384.	7.1	53
25	Pyrite FeS2 nanobelts as high-performance anode material for aqueous pseudocapacitor. Electrochimica Acta, 2016, 222, 172-176.	2.6	52
26	Cotton stalk-derived carbon fiber@Ni-Al layered double hydroxide nanosheets with improved performances for supercapacitors. Applied Surface Science, 2019, 475, 372-379.	3.1	51
27	Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 342-348.	5.0	50
28	Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. Journal of Colloid and Interface Science, 2021, 586, 362-370.	5.0	48
29	Ordered mesoporous Sn–C composite as an anode material for lithium ion batteries. Electrochemistry Communications, 2011, 13, 848-851.	2.3	47
30	Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Applied Surface Science, 2018, 440, 1027-1036.	3.1	47
31	Rod-like anhydrous V ₂ O ₅ assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. RSC Advances, 2019, 9, 30556-30564.	1.7	46
32	Hybridizing δ-type NaxV2O5•nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 321, 134689.	2.6	45
33	High-Performance Anti-freezing Flexible Zn-MnO2 Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte. Frontiers in Chemistry, 2020, 8, 603.	1.8	45
34	Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Materials, 2021, 39, 250-258.	9.5	44
35	Sequentially-processed Na3V2(PO4)3 for cathode material of aprotic sodium ion battery. Nano Energy, 2018, 50, 323-330.	8.2	43
36	Synthesis of mesoporous Sn–Cu composite for lithium ion batteries. Journal of Power Sources, 2012, 209, 204-208.	4.0	41

#	Article	IF	CITATIONS
37	Electrochemical lithium storage of TiO2 hollow microspheres assembled by nanotubes. Journal of Power Sources, 2010, 195, 6893-6896.	4.0	40
38	Facile fabrication of graphene/Cu6Sn5 nanocomposite as the high performance anode material for lithium ion batteries. Electrochimica Acta, 2013, 105, 629-634.	2.6	40
39	Fabrication of three-dimensional carbon coating for SnO2/TiO2 hybrid anode material of lithium-ion batteries. Electrochimica Acta, 2018, 282, 38-47.	2.6	40
40	Facile fabrication of robust TiO 2 @SnO 2 @C hollow nanobelts for outstanding lithium storage. Journal of Power Sources, 2018, 376, 1-10.	4.0	40
41	Facile Fabrication of Hierarchical Hollow Microspheres Assembled by Titanate Nanotubes. Langmuir, 2010, 26, 10111-10114.	1.6	39
42	Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 486-494.	5.0	38
43	Thin Film Electrochemical Capacitors Based on Organolead Triiodide Perovskite. Advanced Electronic Materials, 2016, 2, 1600114.	2.6	37
44	Electrodeposition of MnO2 nanoflakes onto carbon nanotube film towards high-performance flexible quasi-solid-state Zn-MnO2 batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114392.	1.9	37
45	Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137056.	6.6	36
46	Improving the sodiation performance of Na2Ti3O7 through Nb-doping. Electrochimica Acta, 2017, 224, 446-451.	2.6	35
47	Sn-contained N-rich carbon nanowires for high-capacity and long-life lithium storage. Electrochimica Acta, 2014, 127, 390-396.	2.6	34
48	Integrated design of aqueous zinc-ion batteries based on dendrite-free zinc microspheres/carbon nanotubes/nanocellulose composite film anode. Journal of Colloid and Interface Science, 2021, 594, 389-397.	5.0	34
49	Interface Engineering of Silicon and Carbon by Forming a Graded Protective Sheath for High-Capacity and Long-Durable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15216-15225.	4.0	31
50	Nax(Cu–Fe–Mn)O2 system as cathode materials for Na-ion batteries. Nano Energy, 2020, 78, 105142.	8.2	29
51	Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale, 2013, 5, 10623.	2.8	28
52	Carbon nanowires@ultrathin SnO2 nanosheets@carbon composite and its lithium storage properties. Journal of Power Sources, 2014, 246, 587-595.	4.0	28
53	Self-initiated coating of polypyrrole on MnO2/Mn2O3 nanocomposite for high-performance aqueous zinc-ion batteries. Applied Surface Science, 2021, 545, 149041.	3.1	28
54	Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 286-293.	9.5	28

#	Article	IF	CITATIONS
55	Three-dimensional core–shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries. Journal of Power Sources, 2012, 199, 341-345.	4.0	27
56	Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. Journal of Materials Chemistry A, 2021, 9, 3628-3636.	5.2	23
57	The electrochemical and local structural analysis of the mesoporous Li4Ti5O12 anode. Journal of Power Sources, 2014, 268, 294-300.	4.0	22
58	A new hybrid strategy for fabricating titanium dioxide/tin dioxide/carbon composites with outstanding lithium-ion storage. Chemical Engineering Journal, 2018, 342, 266-273.	6.6	22
59	Etching-free template synthesis of double-shelled hollow SiO2@SnO2@C composite as high performance lithium-ion battery anode. Journal of Alloys and Compounds, 2019, 809, 151793.	2.8	22
60	The sandwiched buffer zone enables porous SnO2@C micro-/nanospheres to toward high-performance lithium-ion battery anodes. Electrochimica Acta, 2020, 354, 136699.	2.6	22
61	Porous carbon assisted carbon nanotubes supporting Fe3O4 nanoparticles for improved lithium storage. Ceramics International, 2021, 47, 26092-26099.	2.3	21
62	Self-sacrificing template strategy to facilely prepare well-defined SnO2@C quasi-hollow nanocubes for lithium-ion battery anode. Applied Surface Science, 2020, 507, 145189.	3.1	20
63	Hybridizing Fe ₃ O ₄ nanocrystals with nitrogen-doped carbon nanowires for high-performance supercapacitors. RSC Advances, 2017, 7, 48039-48046.	1.7	17
64	Enabling improved cycling stability of hollow SnO2/C composite anode for lithium-ion battery by constructing a built-in porous carbon support. Applied Surface Science, 2021, 537, 148052.	3.1	17
65	Flexible Ti ₃ C ₂ T _{<i>x</i>/Nanocellulose Hybrid Film as a Stable Zn-free Anode for Aqueous Hybrid Zn–Li Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6876-6884.}	4.0	16
66	Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. Journal of Energy Chemistry, 2022, 71, 539-546.	7.1	15
67	Anatase TiO2 nanowires intertangled with CNT for conductive additive-free lithium-ion battery anodes. Journal of Physics and Chemistry of Solids, 2021, 153, 110037.	1.9	14
68	A robust strategy for stabilizing SnO2: TiO2-supported and carbon-immobilized TiO2/SnO2/C composite towards improved lithium storage. Electrochimica Acta, 2018, 259, 815-821.	2.6	13
69	Improving the lithium storage performance of SnO2 nanoparticles by in-situ embedding into a porous carbon framework. Journal of Alloys and Compounds, 2019, 803, 224-230.	2.8	13
70	Walnut core-like hollow carbon micro/nanospheres supported SnO @C composite for high performance lithium-ion battery anode. Journal of Colloid and Interface Science, 2019, 554, 424-432.	5.0	13
71	Hybridizing δ-Type MnO2 With Lignin-Derived Porous Carbon as a Stable Cathode Material for Aqueous Zn–MnO2 Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	13
72	Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework. Journal of Colloid and Interface Science, 2022, 612, 679-688.	5.0	13

#	Article	IF	CITATIONS
73	High lithium storage performance of CoO with a distinctive dual-carbon-confined nanoarchitecture. Nanoscale, 2021, 13, 12938-12950.	2.8	12
74	Porous engineering enables one-dimensional Co O /C composite to enhance lithium storage. Journal of Alloys and Compounds, 2022, 899, 163293.	2.8	12
75	Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Research, 2022, 15, 6156-6167.	5.8	10
76	Fabrication of TiO 2 in-situ decorated and hierarchical Li 4 Ti 5 O 12 for improved lithium storage. Electrochimica Acta, 2017, 231, 670-676.	2.6	8
77	The smart fabrication of interconnected microspheres constructed by Li 4 Ti 5 O 12 regular nanosheets and their lithium storage properties. Materials Letters, 2017, 194, 118-121.	1.3	8
78	Li-MOF-based ions regulator enabling fast-charging and dendrite-free lithium metal anode. Chinese Chemical Letters, 2023, 34, 107594.	4.8	8
79	Facile fabrication of double-shelled hollow SnO2@C nanoparticles with improved lithium storage via a novel heterogeneous template strategy. Journal of Alloys and Compounds, 2020, 820, 153382.	2.8	7
80	Enhancing the performance of manganous oxide nanoparticles for lithium storage by in-situ construction of porous carbon embedment. Applied Surface Science, 2021, 552, 149531.	3.1	6
81	MnxOy embedded within CNT supporting porous carbon for enhanced lithium storage. Journal of Physics and Chemistry of Solids, 2022, 160, 110317.	1.9	6
82	Fe O nanoparticles in-situ embedded in porous carbon framework towards improved lithium storage. Materials Chemistry and Physics, 2019, 227, 12-20.	2.0	3
83	Porous carbon with carbon nanotube scaffold for embedding Cu2O/Cu nanoparticles towards high lithium storage. Chemical Physics Letters, 2021, 780, 138934.	1.2	3
84	Rendering Wood Veneers Flexible and Electrically Conductive through Delignification and Electroless Ni Plating. Materials, 2019, 12, 3198.	1.3	2
85	Fe-Based Anode Materials for Asymmetric Supercapacitors. , 2021, , 493-515.		0