
Bar Mosevitzky Lis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of non-redox promoters (AlOx, POx, SiOx and ZrOx) and surface sulfates on supported V2O5-WO3/TiO2 catalysts in selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2022, 306, 121128.	10.8	3
2	Effect of redox promoters (CeOx and CuOx) and surface sulfates on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. Applied Catalysis B: Environmental, 2022, 306, 121108.	10.8	12
3	Structure–Activity Relationships of Hydrothermally Aged Titania-Supported Vanadium–Tungsten Oxide Catalysts for SCR of NO _{<i>x</i>} Emissions with NH ₃ . ACS Catalysis, 2021, 11, 12096-12111.	5.5	20
4	Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews, 2020, 120, 5352-5436.	23.0	165
5	Thermal Autoignition of Aqueous Urea Ammonium Nitrate as a Function of Equivalence Ratio, Water Content, and Nitrogen Pressure. Energy Technology, 2018, 6, 540-546.	1.8	2
6	Effect of equivalence ratio on the thermal autoignition of aqueous ammonia ammonium nitrate monofuel. Combustion and Flame, 2018, 188, 142-149.	2.8	8
7	Effects of water content and diluent pressure on the ignition of aqueous ammonia/ammonium nitrate and urea/ammonium nitrate fuels. Applied Energy, 2018, 224, 300-308.	5.1	6
8	Auto-ignition of a carbon-free aqueous ammonia/ammonium nitrate monofuel: A thermal and barometric analysis. Fuel Processing Technology, 2017, 159, 363-368.	3.7	10
9	Pollutant Abatement of Nitrogen-Based Fuel Effluents over Mono- and Bimetallic Pt/Ru Catalysts. ACS Omega, 2017, 2, 8273-8281.	1.6	0
10	The Nitrogen Economy: The Feasibility of Using Nitrogen-Based Alternative Fuels. Energy Procedia, 2017, 135, 3-13.	1.8	7
11	Effect of diluent pressure on the auto-ignition kinetics of a low-carbon urea ammonium nitrate monofuel. Energy Procedia, 2017, 142, 716-722.	1.8	0
12	Flow Reactor Combustion of Aqueous Urea Ammonium Nitrate Fuel. Energy & Fuels, 2016, 30, 2474-2477.	2.5	10
13	Combustion simulations of aqueous urea ammonium nitrate monofuel at high pressures. Combustion and Flame, 2016, 166, 295-306.	2.8	14
14	Hostâ€dependent differences in abundance, composition and host range of cyanophages from the <scp>R</scp> ed <scp>S</scp> ea. Environmental Microbiology, 2015, 17, 1286-1299.	1.8	42