Veronique J Moulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3796400/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of wound reepithelialization: hints from a tissueâ€engineered reconstructed skin to longâ€standing questions. FASEB Journal, 2001, 15, 2377-2389.	0.2	179
2	Expression of Heat Shock Proteins in Mouse Skin During Wound Healing. Journal of Histochemistry and Cytochemistry, 1998, 46, 1291-1301.	1.3	159
3	Tissueâ€engineered skin substitutes: from <i>in vitro</i> constructs to <i>in vivo</i> applications. Biotechnology and Applied Biochemistry, 2004, 39, 263-275.	1.4	128
4	Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars. Journal of Pathology, 2005, 206, 1-8.	2.1	119
5	Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Medical and Biological Engineering and Computing, 1998, 36, 801-812.	1.6	117
6	Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. Journal of Cellular Physiology, 2004, 198, 350-358.	2.0	116
7	Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns, 2000, 26, 3-12.	1.1	111
8	Modulated Response to Cytokines of Human Wound Healing Myofibroblasts Compared to Dermal Fibroblasts. Experimental Cell Research, 1998, 238, 283-293.	1.2	92
9	Anticancer properties of chitosan on human melanoma are cell line dependent. International Journal of Biological Macromolecules, 2015, 72, 370-379.	3.6	84
10	Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: a case series of 14 severely burned patients indicating clinical effectiveness. , 2018, 36, 128-141.		68
11	Enhanced secretion of TIMP-1 by human hypertrophic scar keratinocytes could contribute to fibrosis. Burns, 2012, 38, 421-427.	1.1	62
12	Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. Journal of Cellular Physiology, 2001, 188, 211-222.	2.0	61
13	In vitro models to study wound healing fibroblasts. Burns, 1996, 22, 359-362.	1.1	55
14	Differential expression of collagen integrin receptor on fetal vs. adult skin fibroblasts: implication in wound contraction during healing. British Journal of Dermatology, 2002, 147, 886-892.	1.4	47
15	Angiogenic properties of myofibroblasts isolated from normal human skin wounds. Angiogenesis, 2012, 15, 199-212.	3.7	47
16	Improved Methods to Produce Tissue-Engineered Skin Substitutes Suitable for the Permanent Closure of Full-Thickness Skin Injuries. BioResearch Open Access, 2016, 5, 320-329.	2.6	43
17	The fibrotic phenotype of systemic sclerosis fibroblasts varies with disease duration and severity of skin involvement: reconstitution of skin fibrosis development using a tissue engineering approach. Journal of Pathology, 2009, 217, 534-542.	2.1	40
18	Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis, 2017, 20, 385-398.	3.7	40

#	Article	IF	CITATIONS
19	Tissue-engineered human asthmatic bronchial equivalents. , 2004, 7, 1-11.		40
20	Prospective Study on the Treatment of Lower-Extremity Chronic Venous and Mixed Ulcers Using Tissue-Engineered Skin Substitute Made by the Self-assembly Approach. Advances in Skin and Wound Care, 2013, 26, 400-409.	0.5	38
21	Restoration of the Transepithelial Potential Within Tissue-Engineered Human Skin In Vitro and During the Wound Healing Process In Vivo. Tissue Engineering - Part A, 2010, 16, 3055-3063.	1.6	37
22	Fetal and postnatal sera differentially modulate human dermal fibroblast phenotypic and functional features in vitro. , 1997, 171, 1-10.		36
23	New ligament healing model based on tissueâ€engineered collagen scaffolds. Wound Repair and Regeneration, 2011, 19, 38-48.	1.5	32
24	Microvesicles: Intercellular messengers in cutaneous wound healing. Journal of Cellular Physiology, 2018, 233, 5550-5563.	2.0	32
25	Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomaterialia, 2015, 22, 39-49.	4.1	31
26	Shedding of microparticles by myofibroblasts as mediator of cellular crossâ€ŧalk during normal wound healing. Journal of Cellular Physiology, 2010, 225, 734-740.	2.0	29
27	Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BioMed Research International, 2020, 2020, 1-23.	0.9	28
28	Human keratinocytes respond to direct current stimulation by increasing intracellular calcium: Preferential response of poorly differentiated cells. Journal of Cellular Physiology, 2012, 227, 2660-2667.	2.0	25
29	Role of seaweed laminaran from Saccharina longicruris on matrix deposition during dermal tissue-engineered production. International Journal of Biological Macromolecules, 2015, 75, 13-20.	3.6	24
30	Production of a Bilayered Self-Assembled Skin Substitute Using a Tissue-Engineered Acellular Dermal Matrix. Tissue Engineering - Part C: Methods, 2015, 21, 1297-1305.	1.1	21
31	GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1066-H1079.	1.5	21
32	Granulation tissue myofibroblasts during normal and pathological skin healing: The interaction between their secretome and the microenvironment. Wound Repair and Regeneration, 2021, 29, 563-572.	1.5	20
33	<i>In Vivo</i> Evaluation and Imaging of a Bilayered Self-Assembled Skin Substitute Using a Decellularized Dermal Matrix Grafted on Mice. Tissue Engineering - Part A, 2017, 23, 313-322.	1.6	18
34	Electric Potential Across Epidermis and Its Role During Wound Healing Can Be Studied by Using an <i>In Vitro</i> Reconstructed Human Skin. Advances in Wound Care, 2012, 1, 81-87.	2.6	17
35	Human skin fibroblast response is differentially regulated by galactofucan and low molecular weight galactofucan. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 105-110.	1.5	17
36	Decreased secretion of MMP by non-lesional late-stage scleroderma fibroblasts after selection via activation of the apoptotic fas-pathway. Journal of Cellular Physiology, 2011, 226, 1907-1914.	2.0	16

Veronique J Moulin

#	Article	IF	CITATIONS
37	Identification of Cellular Processes That Are Rapidly Modulated in Response to Tracheal Occlusion Within Mice Lungs. Pediatric Research, 2008, 63, 124-130.	1.1	15
38	Morphological changes of human skin cells exposed to a DC electric field <i>in vitro</i> using a new exposure system. Canadian Journal of Chemical Engineering, 2001, 79, 668-677.	0.9	14
39	Sensitivity of myofibroblasts to H2O2-mediated apoptosis and their antioxidant cell network. Journal of Cellular Physiology, 2004, 200, 263-271.	2.0	12
40	Translating the combination of gene therapy and tissue engineering for treating recessive dystrophic epidermolysis bullosa. , 2018, 35, 73-86.		12
41	Apple Extract (<i>Malus</i> sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin. Rejuvenation Research, 2020, 23, 465-475.	0.9	12
42	Reconstitution of Skin Fibrosis Development Using a Tissue Engineering Approach. Methods in Molecular Biology, 2013, 961, 287-303.	0.4	11
43	Isolation and Culture of Human Dermal Microvascular Endothelial Cells. Methods in Molecular Biology, 2019, 1993, 79-90.	0.4	11
44	Engineering Human Tissues for <i>in Vivo</i> Applications. Annals of the New York Academy of Sciences, 2002, 961, 268-270.	1.8	10
45	Apoptosis Modulation as a Promising Target for Treatment of Systemic Sclerosis. International Journal of Rheumatology, 2011, 2011, 1-13.	0.9	8
46	Surviving an Extensive Burn Injury Using Advanced Skin Replacement Technologies. Journal of Burn Care and Research, 2021, 42, 1288-1291.	0.2	8
47	Characterization of Epidermal Lipoxygenase Expression in Normal Human Skin and Tissue-Engineered Skin Substitutes. Journal of Histochemistry and Cytochemistry, 2018, 66, 813-824.	1.3	7
48	PLGF-1 contained in normal wound myofibroblast-derived microvesicles stimulated collagen production by dermal fibroblasts. Journal of Cell Communication and Signaling, 2020, 14, 427-438.	1.8	7
49	Shedding of proangiogenic microvesicles from hypertrophic scar myofibroblasts. Experimental Dermatology, 2021, 30, 112-120.	1.4	7
50	αâ€⊋â€Macroglobulin induces the shedding of microvesicles from cutaneous wound myofibroblasts. Journal of Cellular Physiology, 2019, 234, 11369-11379.	2.0	6
51	Evaluation of contractile phenotype in airway smooth muscle cells isolated from endobronchial biopsy and tissue specimens from horses. American Journal of Veterinary Research, 2017, 78, 359-370.	0.3	5
52	Three-Dimensional Model of Hypertrophic Scar Using a Tissue-Engineering Approach. Methods in Molecular Biology, 2021, 2299, 419-434.	0.4	3
53	Principles of Living Organ Reconstruction by Tissue Engineering. , 2003, , .		2
54	Myofibroblasts and Interactions with Other Cells: Contribution of the Tissue Engineering. , 2012, , 69-75.		1

Veronique J Moulin

#	Article	IF	CITATIONS
55	Biofabrication and preclinical evaluation of a large-sized human self-assembled skin substitute. Biomedical Materials (Bristol), 2021, 16, 025023.	1.7	1
56	Myofibroblasts from skin wound and hypertrophic scar present different apoptotic response to body fluids. FASEB Journal, 2007, 21, A759.	0.2	0
57	Apoptosis plays a key role in clonal selection of pathologic fibroblast subâ€populations in systemic sclerosis. FASEB Journal, 2007, 21, A13.	0.2	Ο
58	New role of Human myofibroblasts on neovascularisation during wound healing. FASEB Journal, 2008, 22, 901.1.	0.2	0
59	Proteomic analysis of microparticles produced by wound healing myofibroblasts cells. FASEB Journal, 2013, 27, 649.13.	0.2	0