
Massimo Silvetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3796296/publications.pdf Version: 2024-02-01

MASSIMO SUVETTI

#	Article	IF	CITATIONS
1	Left and right temporal-parietal junctions (TPJs) as "match/mismatch―hedonic machines: A unifying account of TPJ function. Physics of Life Reviews, 2022, 42, 56-92.	1.5	21
2	Autistic traits are related to worse performance in a volatile reward learning task despite adaptive learning rates. Autism, 2021, 25, 440-451.	2.4	20
3	Computational Modeling of Catecholamines Dysfunction in Alzheimer's Disease at Pre-Plaque Stage. Journal of Alzheimer's Disease, 2020, 77, 275-290.	1.2	15
4	Expectancy modulates pupil size both during endogenous orienting and during reâ€orienting of spatial attention: A study with isoluminant stimuli. European Journal of Neuroscience, 2019, 50, 2893-2904.	1.2	11
5	A Computational Hypothesis on How Serotonin Regulates Catecholamines in the Pathogenesis of Depressive Apathy. Springer Series in Cognitive and Neural Systems, 2019, , 127-134.	0.1	2
6	Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner. PLoS Computational Biology, 2018, 14, e1006370.	1.5	61
7	Human midcingulate cortex encodes distributed representations of task progress. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6398-6403.	3.3	32
8	How The Brain Learns To Control Itself. , 2018, , .		0
9	Commentary: The Role of the Parietal Cortex in the Representation of Task–Reward Associations. Frontiers in Human Neuroscience, 2016, 10, 192.	1.0	4
10	The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation. Cerebral Cortex, 2016, 26, 4551-4562.	1.6	31
11	Adaptive effort investment in cognitive and physical tasks: a neurocomputational model. Frontiers in Behavioral Neuroscience, 2015, 9, 57.	1.0	91
12	No pain, no gain: the affective valence of congruency conditions changes following a successful response. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 251-261.	1.0	67
13	Selective reorienting response of the left hemisphere to invalid visual targets in the right side of space: Relevance for the spatial neglect syndrome. Cortex, 2015, 65, 31-35.	1.1	20
14	Overlapping Neural Systems Represent Cognitive Effort and Reward Anticipation. PLoS ONE, 2014, 9, e91008.	1.1	145
15	Damage to White Matter Pathways in Subacute and Chronic Spatial Neglect: A Group Study and 2 Single-Case Studies with Complete Virtual "In Vivo" Tractography Dissection. Cerebral Cortex, 2014, 24, 691-706.	1.6	300
16	Reward expectation and prediction error in human medial frontal cortex: An EEG study. NeuroImage, 2014, 84, 376-382.	2.1	29
17	From conflict management to reward-based decision making: Actors and critics in primate medial frontal cortex. Neuroscience and Biobehavioral Reviews, 2014, 46, 44-57.	2.9	95
18	Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice. Neuropsychologia, 2014, 59, 112-123.	0.7	60

MASSIMO SILVETTI

#	Article	IF	CITATIONS
19	Deficient reinforcement learning in medial frontal cortex as a model of dopamine-related motivational deficits in ADHD. Neural Networks, 2013, 46, 199-209.	3.3	33
20	Value and prediction error estimation account for volatility effects in ACC: A model-based fMRI study. Cortex, 2013, 49, 1627-1635.	1.1	52
21	The influence of the noradrenergic system on optimal control of neural plasticity. Frontiers in Behavioral Neuroscience, 2013, 7, 160.	1.0	37
22	Value and Prediction Error in Medial Frontal Cortex: Integrating the Single-Unit and Systems Levels of Analysis. Frontiers in Human Neuroscience, 2011, 5, 75.	1.0	112
23	Determining priority between attentional and referential-coding sources of the Simon effect through optokinetic stimulation. Neuropsychologia, 2010, 48, 1011-1015.	0.7	15
24	Neural Correlates of the Spatial and Expectancy Components of Endogenous and Stimulus-Driven Orienting of Attention in the Posner Task. Cerebral Cortex, 2010, 20, 1574-1585.	1.6	199
25	No reversal of the Oppel–Kundt illusion with short stimuli: confutation of the space anisometry interpretation of neglect and â€~cross-over' in line bisection. Brain, 2008, 131, e94-e94.	3.7	8
26	Object-centred neglect: Simulation with head-centred coding based on Gaussian gaze-dependent units. Neuropsychologia, 2007, 45, 2553-2560.	0.7	3
27	The "ways―we look at dreams: evidence from unilateral spatial neglect (with an evolutionary account) Tj ET(2q1_1 0.78	84314 rgB ⁻
28	Simulating object-centred neglect with head-centred coding of space based on non-linear gaze-dependent units. Advances in Consciousness Research, 2006, , 381-394.	0.2	0
29	Effects of Vestibular Rotatory Accelerations on Covert Attentional Orienting in Vision and Touch. Journal of Cognitive Neuroscience, 2005, 17, 1638-1651.	1.1	48
30	Causes of cross-over in unilateral neglect: between-group comparisons, within-patient dissociations and eye movements. Brain, 2005, 128, 1386-1406.	3.7	50
31	Reinforcement Learning, High-Level Cognition, and the Human Brain. , 0, , .		8