
Gonghu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795952/publications.pdf Version: 2024-02-01

СолениЦ

#	Article	IF	CITATIONS
1	Photoreactive TiO ₂ /Carbon Nanotube Composites: Synthesis and Reactivity. Environmental Science & Technology, 2008, 42, 4952-4957.	10.0	535
2	Energy Conversion in Natural and Artificial Photosynthesis. Chemistry and Biology, 2010, 17, 434-447.	6.0	366
3	Role of Surface/Interfacial Cu ²⁺ Sites in the Photocatalytic Activity of Coupled CuOâ^'TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 19040-19044.	3.1	344
4	Selective CO ₂ Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation. Journal of the American Chemical Society, 2018, 140, 16042-16047.	13.7	296
5	The solid–solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chemical Physics, 2007, 339, 173-187.	1.9	279
6	Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Transactions, 2009, , 10078.	3.3	196
7	The Important Role of Tetrahedral Ti ⁴⁺ Sites in the Phase Transformation and Photocatalytic Activity of TiO ₂ Nanocomposites. Journal of the American Chemical Society, 2008, 130, 5402-5403.	13.7	166
8	Acetylacetonate Anchors for Robust Functionalization of TiO ₂ Nanoparticles with Mn(II)â^'Terpyridine Complexes. Journal of the American Chemical Society, 2008, 130, 14329-14338.	13.7	151
9	A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid–solid interface. Journal of Molecular Catalysis A, 2007, 275, 30-35.	4.8	128
10	Preparation of Mixed-Phase Titanium Dioxide Nanocomposites via Solvothermal Processing. Chemistry of Materials, 2007, 19, 1143-1146.	6.7	109
11	Enhanced Charge Separation in Nanostructured TiO ₂ Materials for Photocatalytic and Photovoltaic Applications. Industrial & Engineering Chemistry Research, 2012, 51, 11841-11849.	3.7	94
12	Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy and Environmental Science, 2009, 2, 1173.	30.8	91
13	Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films, 2006, 515, 1176-1181.	1.8	90
14	Development of Improved Materials for Environmental Applications:Â Nanocrystalline NaY Zeolites. Environmental Science & Technology, 2005, 39, 1214-1220.	10.0	88
15	Synergy between Defects, Photoexcited Electrons, and Supported Single Atom Catalysts for CO ₂ Reduction. ACS Catalysis, 2018, 8, 10464-10478.	11.2	85
16	Photocatalytic CO ₂ Reduction and Surface Immobilization of a Tricarbonyl Re(I) Compound Modified with Amide Groups. ACS Catalysis, 2013, 3, 655-662.	11.2	83
17	Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films, 2009, 517, 5641-5645.	1.8	80
18	Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy and Environmental Science, 2009, 2, 230.	30.8	80

Gonghu Li

#	Article	IF	CITATIONS
19	Re(I) NHC Complexes for Electrocatalytic Conversion of CO ₂ . Inorganic Chemistry, 2016, 55, 3136-3144.	4.0	77
20	Reduction of CO ₂ on a Tricarbonyl Rhenium(I) Complex: Modeling a Catalytic Cycle. Journal of Physical Chemistry A, 2011, 115, 2877-2881.	2.5	71
21	Selective catalytic reduction of NO2 with urea in nanocrystalline NaY zeolite. Journal of Catalysis, 2005, 234, 401-413.	6.2	65
22	Reversible Visible-Light Photooxidation of an Oxomanganese Water-Oxidation Catalyst Covalently Anchored to TiO ₂ Nanoparticles. Journal of Physical Chemistry B, 2010, 114, 14214-14222.	2.6	56
23	Photocatalytic CO ₂ reduction using a molecular cobalt complex deposited on TiO ₂ nanoparticles. Chemical Communications, 2014, 50, 6221-6224.	4.1	55
24	Three-Dimensional Graphene–TiO ₂ Nanocomposite Photocatalyst Synthesized by Covalent Attachment. ACS Omega, 2016, 1, 351-356.	3.5	48
25	Surface Basicity of Metal@TiO ₂ to Enhance Photocatalytic Efficiency for CO ₂ Reduction. ACS Applied Materials & Interfaces, 2021, 13, 38595-38603.	8.0	45
26	Catalytic reduction of NO2 in nanocrystalline NaY zeolite. Journal of Molecular Catalysis A, 2005, 227, 25-35.	4.8	39
27	Covalent attachment of a molecular CO2-reduction photocatalyst to mesoporous silica. Journal of Molecular Catalysis A, 2012, 363-364, 208-213.	4.8	36
28	Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor. Chemical Physics Letters, 2008, 451, 75-79.	2.6	34
29	CO ₂ reduction with Re(<scp>i</scp>)–NHC compounds: driving selective catalysis with a silicon nanowire photoelectrode. Chemical Communications, 2016, 52, 14258-14261.	4.1	32
30	Adsorption and Photochemical Properties of a Molecular CO ₂ Reduction Catalyst in Hierarchical Mesoporous ZSM-5: An In Situ FTIR Study. Journal of Physical Chemistry Letters, 2012, 3, 486-492.	4.6	30
31	An FT-IR Study of NO2 Reduction in Nanocrystalline NaY Zeolite: Effect of Zeolite Crystal Size and Adsorbed Water. Catalysis Letters, 2005, 103, 23-32.	2.6	29
32	Photoelectrochemical CO ₂ Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces. Chemistry - A European Journal, 2016, 22, 13064-13067.	3.3	27
33	Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticles: Controllable Metal–Support Interaction in Porous Materials. ACS Applied Materials & Interfaces, 2020, 12, 9617-9627.	8.0	24
34	Solar CO ₂ Reduction Using Surface-Immobilized Molecular Catalysts. Comments on Inorganic Chemistry, 2016, 36, 38-60.	5.2	23
35	Solving the structure of "single-atom―catalysts using machine learning – assisted XANES analysis. Physical Chemistry Chemical Physics, 2022, 24, 5116-5124.	2.8	19
36	Coâ€Template Directed Synthesis of Gold Nanoparticles in Mesoporous Titanium Dioxide. Chemistry - A European Journal, 2018, 24, 9651-9657.	3.3	18

Gonghu Li

#	Article	IF	CITATIONS
37	Infrared studies of a hybrid CO2-reduction photocatalyst consisting of a molecular Re(I) complex grafted on Kaolin. Journal of Molecular Catalysis A, 2014, 395, 145-150.	4.8	17
38	Single-Walled Carbon Nanotube-Facilitated Dispersion of Particulate TiO ₂ on ZrO ₂ Ceramic Membrane Filters. Langmuir, 2008, 24, 7072-7075.	3.5	16
39	Heterogenization of a macrocyclic cobalt complex for photocatalytic CO ₂ reduction. Journal of Coordination Chemistry, 2016, 69, 1748-1758.	2.2	16
40	Photocatalytic CO ₂ reduction by highly dispersed Cu sites on TiO ₂ . Journal of Photonics for Energy, 2016, 7, 012004.	1.3	15
41	Effect of Carbon Doping on CO ₂ â€Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. ChemNanoMat, 2021, 7, 1051-1056.	2.8	15
42	Photoelectrochemical oxidation of a turn-on fluorescent probe mediated by a surface MnII catalyst covalently attached to TiO2 nanoparticles. Journal of Catalysis, 2014, 310, 37-44.	6.2	12
43	Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy. Communications Chemistry, 2022, 5, .	4.5	12
44	The stability and oxidation of supported atomic-size Cu catalysts in reactive environments. Journal of Chemical Physics, 2019, 151, 054702.	3.0	11
45	Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604.	3.1	11
46	Molecular deposition of a macrocyclic cobalt catalyst on TiO2 nanoparticles. Journal of Molecular Catalysis A, 2016, 423, 293-299.	4.8	10
47	Effect of ligand derivatization at different positions on photochemical properties of hybrid Re(I) photocatalysts. Journal of Molecular Catalysis A, 2016, 411, 272-278.	4.8	8
48	Photoelectrochemical NADH regeneration is highly sensitive to the nature of electrode surface. Journal of Chemical Physics, 2020, 153, 064703.	3.0	8
49	Hybrid Carbon Dioxide Reduction Photocatalysts Consisting of Macrocyclic Cobalt(III) Complexes Deposited on Semiconductor Surfaces. ChemPhotoChem, 2020, 4, 420-426.	3.0	8
50	Tunable Photocatalytic Production of Syngas Using Co@C ₃ N ₄ and Black Phosphorus. ChemPhotoChem, 2021, 5, 674-679.	3.0	8
51	Microwave-assisted deposition of a highly active cobalt catalyst on mesoporous silica for photochemical CO ₂ reduction. Dalton Transactions, 2017, 46, 10721-10726.	3.3	8
52	Involvement of surface-adsorbed water in photochromism of spiropyran molecules deposited on NaY zeolite. Chemical Physics Letters, 2014, 598, 53-57.	2.6	3
53	Innovative Photocatalysts for Solar Fuel Generation by CO2 Reduction. , 2013, , 219-241.		2
54	Infrared studies of surface carbonate binding to diimine-tricarbonyl Re(I) and Mn(I) complexes in mesoporous silica. Journal of Coordination Chemistry, 2019, 72, 1336-1345.	2.2	2

#	Article	IF	CITATIONS
55	Visible-light degradation of Orange II using an Fe(II)–terpyridine complex grafted onto TiO2 surface. Canadian Journal of Chemistry, 2018, 96, 890-895.	1.1	1
56	Photocatalytic and Photoelectrochemical Carbon Dioxide Reduction. ChemPhotoChem, 2022, 6, .	3.0	1