Gerald Fuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795793/publications.pdf Version: 2024-02-01

		31949	56687
224	8,924	53	83
papers	citations	h-index	g-index
235	235	235	6794
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pickering Emulsions with Controllable Stability. Langmuir, 2005, 21, 2158-2162.	1.6	348
2	An Interfacial Stress Rheometer To Study Rheological Transitions in Monolayers at the Airâ^'Water Interface. Langmuir, 1999, 15, 2450-2459.	1.6	321
3	A double wall-ring geometry for interfacial shear rheometry. Rheologica Acta, 2010, 49, 131-144.	1.1	266
4	Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface:Â Comparison of Shear and Dilatation Deformation. Journal of Physical Chemistry B, 2004, 108, 3835-3844.	1.2	258
5	Complex Fluid-Fluid Interfaces: Rheology and Structure. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 519-543.	3.3	258
6	Extensional Viscosity Measurements for Lowâ€Viscosity Fluids. Journal of Rheology, 1987, 31, 235-249.	1.3	168
7	Shear and Dilatational Relaxation Mechanisms of Globular and Flexible Proteins at the Hexadecane/Water Interface. Langmuir, 2004, 20, 10159-10167.	1.6	167
8	Shearing or Compressing a Soft Glass in 2D: Time-Concentration Superposition. Physical Review Letters, 2003, 90, 236101.	2.9	158
9	Packing, Flipping, and Buckling Transitions in Compressed Monolayers of Ellipsoidal Latex Particles. Langmuir, 2006, 22, 6605-6612.	1.6	156
10	Microstructure evolution in magnetorheological suspensions governed by Mason number. Physical Review E, 2003, 68, 041503.	0.8	149
11	Analysis of the magnetic rod interfacial stress rheometer. Journal of Rheology, 2008, 52, 261-285.	1.3	136
12	Nonmonotonic Elasticity of the Crude Oil–Brine Interface in Relation to Improved Oil Recovery. Langmuir, 2016, 32, 2192-2198.	1.6	134
13	Coalescence of Particle-Laden Fluid Interfaces. Langmuir, 2004, 20, 90-94.	1.6	126
14	Shear and Dilational Surface Rheology of Oppositely Charged Polyelectrolyte/Surfactant Microgels Adsorbed at the Airâ^'Water Interface. Influence on Foam Stability. Journal of Physical Chemistry B, 2004, 108, 16473-16482.	1.2	124
15	Optical Rheometry. Annual Review of Fluid Mechanics, 1990, 22, 387-417.	10.8	106
16	Shape and Buckling Transitions in Solid-Stabilized Drops. Langmuir, 2005, 21, 10016-10020.	1.6	106
17	Structure and dynamics of magnetorheological fluids in rotating magnetic fields. Physical Review E, 2000, 61, 4111-4117.	0.8	105
18	Transient shear flow of nematic liquid crystals: Manifestations of director tumbling. Journal of Rheology, 1990, 34, 959-992.	1.3	104

#	Article	IF	CITATIONS
19	Structure and rheology of wormlike micelles. Rheologica Acta, 1996, 35, 139-149.	1.1	99
20	Interaction of human whole saliva and astringent dietary compounds investigated by interfacial shear rheology. Food Hydrocolloids, 2008, 22, 1068-1078.	5.6	96
21	Timeâ€dependent smallâ€angle light scattering of shearâ€nduced concentration fluctuations in polymer solutions. Journal of Chemical Physics, 1992, 96, 7742-7757.	1.2	92
22	Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. Journal of Non-Newtonian Fluid Mechanics, 1998, 75, 193-208.	1.0	92
23	Flow-Induced Anisotropy and Reversible Aggregation in Two-Dimensional Suspensions. Langmuir, 2003, 19, 9134-9141.	1.6	92
24	Connect the Drops:Â Using Solids as Adhesives for Liquids. Langmuir, 2004, 20, 4805-4808.	1.6	90
25	Lung surfactants and different contributions to thin film stability. Soft Matter, 2015, 11, 8048-8057.	1.2	88
26	The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials, 2013, 34, 4038-4047.	5.7	82
27	Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow. Biophysical Journal, 2014, 106, 366-374.	0.2	79
28	Structure and dynamics of a polymer solution subject to flow-induced phase separation. Rheologica Acta, 1991, 30, 89-97.	1.1	78
29	Note: A Note on Phaseâ€Modulated Flow Birefringence: A Promising Rheoâ€Optical Method. Journal of Rheology, 1984, 28, 61-70.	1.3	77
30	DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12–CXCR4 signaling axis. Genes and Development, 2017, 31, 1308-1324.	2.7	77
31	In-Situ Quantification of the Interfacial Rheological Response of Bacterial Biofilms to Environmental Stimuli. PLoS ONE, 2013, 8, e78524.	1.1	76
32	Viscoelastic Properties of Lipopolymers at the Airâ^'Water Interface:Â A Combined Interfacial Stress Rheometer and Film Balance Study. Langmuir, 1999, 15, 7752-7761.	1.6	73
33	Note: Optical Rheometry Using a Rotary Polarization Modulator. Journal of Rheology, 1989, 33, 761-769.	1.3	72
34	Determining the mechanical response of particle-laden fluid interfaces using surface pressure isotherms and bulk pressure measurements of droplets. Physical Chemistry Chemical Physics, 2007, 9, 6344.	1.3	72
35	Polarizable Particle Aggregation Under Rotating Magnetic Fields Using Scattering Dichroism. Journal of Colloid and Interface Science, 2002, 247, 200-209.	5.0	69
36	Quantitative Analysis of Amyloid-Integrated Biofilms Formed by Uropathogenic Escherichia coli at the Air-Liquid Interface. Biophysical Journal, 2012, 103, 464-471.	0.2	68

#	Article	IF	CITATIONS
37	Rheo-Optical Studies of Shear-Induced Structures in Semidilute Polystyrene Solutions. Macromolecules, 1997, 30, 7232-7236.	2.2	67
38	Structure and Dynamics of Particle Monolayers at a Liquidâ^'Liquid Interface Subjected to Extensional Flow. Langmuir, 2002, 18, 4372-4375.	1.6	67
39	Rheological and Thermal Properties of Elastomeric Polypropylene. Macromolecules, 1998, 31, 5343-5351.	2.2	66
40	Droplet Coalescence and Spontaneous Emulsification in the Presence of Asphaltene Adsorption. Langmuir, 2017, 33, 10501-10510.	1.6	66
41	Liquid Crystalline Collagen: A Self-Assembled Morphology for the Orientation of Mammalian Cells. Langmuir, 2009, 25, 3200-3206.	1.6	65
42	Thermoresponsiveness of PDMAEMA. Electrostatic and Stereochemical Effects. Macromolecules, 2013, 46, 2331-2340.	2.2	63
43	Structural and Rheological Properties of Meibomian Lipid. , 2013, 54, 2720.		63
44	Morphology of Thermoplastic Elastomers:Â Elastomeric Polypropylene. Macromolecules, 2002, 35, 2654-2666.	2.2	62
45	The interfacial viscoelastic properties and structures of human and animal Meibomian lipids. Experimental Eye Research, 2010, 90, 598-604.	1.2	62
46	Designing a tubular matrix of oriented collagen fibrils for tissue engineering. Acta Biomaterialia, 2011, 7, 2448-2456.	4.1	61
47	Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations. Journal of Colloid and Interface Science, 2019, 550, 128-138.	5.0	61
48	Anisotropy and Orientation of the Microstructure in Viscous Emulsions during Shear Flow. Langmuir, 1998, 14, 1612-1617.	1.6	60
49	Aligned nanofibrillar collagen regulates endothelial organization and migration. Regenerative Medicine, 2012, 7, 649-661.	0.8	60
50	Influence of interfacial rheology on drainage from curved surfaces. Soft Matter, 2014, 10, 6917-6925.	1.2	59
51	Tracking the interfacial dynamics of PNiPAM soft microgels particles adsorbed at the air–water interface and in thin liquid films. Rheologica Acta, 2013, 52, 445-454.	1.1	58
52	Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter, 2016, 12, 3293-3302.	1.2	57
53	Spatial patterning of endothelium modulates cell morphology, adhesiveness and transcriptional signature. Biomaterials, 2013, 34, 2928-2937.	5.7	56
54	Molecular Determinants of Mechanical Properties of V.Âcholerae Biofilms atÂthe Air-Liquid Interface. Biophysical Journal, 2014, 107, 2245-2252.	0.2	55

#	Article	IF	CITATIONS
55	Time Scaling Regimes in Aggregation of Magnetic Dipolar Particles: Scattering Dichroism Results. Physical Review Letters, 2001, 87, 115501.	2.9	52
56	Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum. Biophysical Journal, 2012, 102, 369-376.	0.2	51
57	Interfacial Rheology of Natural Silk Fibroin at Air/Water and Oil/Water Interfaces. Langmuir, 2012, 28, 459-467.	1.6	51
58	Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence. Langmuir, 2018, 34, 630-638.	1.6	51
59	Nanoscale Patterning of Extracellular Matrix Alters Endothelial Function under Shear Stress. Nano Letters, 2016, 16, 410-419.	4.5	50
60	Rheo-optical studies of the effect of weak Brownian rotations in sheared suspensions. Journal of Fluid Mechanics, 1986, 168, 119.	1.4	49
61	Mechanical Properties and Structure of Particle Coated Interfaces:Â Influence of Particle Size and Bidisperse 2D Suspensions. Langmuir, 2007, 23, 3975-3980.	1.6	49
62	Investigation of shear-banding structure in wormlike micellar solution by point-wise flow-induced birefringence measurements. Journal of Rheology, 2005, 49, 537-550.	1.3	47
63	Synthesis Route for the Self-Assembly of Submicrometer-Sized Colloidosomes with Tailorable Nanopores. Chemistry of Materials, 2013, 25, 3464-3471.	3.2	47
64	Two-Dimensional Physical Networks of Lipopolymers at the Air/Water Interface:Â Correlation of Molecular Structure and Surface Rheological Behavior. Langmuir, 2001, 17, 2801-2806.	1.6	45
65	Two-Dimensional Melts:Â Polymer Chains at the Airâ^'Water Interface. Macromolecules, 2005, 38, 6672-6679.	2.2	45
66	Dynamic fluid-film interferometry as a predictor of bulk foam properties. Soft Matter, 2016, 12, 9266-9279.	1.2	45
67	Response of Moderately Concentrated Xanthan Gum Solutions to Timeâ€Dependent Flows Using Twoâ€Color Flow Birefringence. Journal of Rheology, 1984, 28, 23-43.	1.3	44
68	Orientation in a Fatty Acid Monolayer:Â Effect of Flow Type. Langmuir, 1998, 14, 1836-1845.	1.6	43
69	Evaporation-induced foam stabilization in lubricating oils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7919-7924.	3.3	43
70	Deformation and Relaxation Processes of Mono- and Bilayer Domains of Liquid Crystalline Langmuir Films on Water. Langmuir, 1996, 12, 5630-5635.	1.6	42
71	Molecular Structure of Interfacial Human Meibum Films. Langmuir, 2012, 28, 11858-11865.	1.6	42
72	Consequences of Interfacial Viscoelasticity on Thin Film Stability. Langmuir, 2012, 28, 14238-14244.	1.6	40

#	Article	IF	CITATIONS
73	Phosphoethanolamine cellulose enhances curli-mediated adhesion of uropathogenic <i>Escherichia coli</i> to bladder epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10106-10111.	3.3	40
74	Lung Surfactant Gelation Induced by Epithelial Cells Exposed to Air Pollution or Oxidative Stress. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 161-168.	1.4	39
75	Rheooptical determination of aspect ratio and polydispersity of nonspherical particles. AICHE Journal, 2001, 47, 790-798.	1.8	38
76	Direct Visualization of Flow-Induced Anisotropy in a Fatty Acid Monolayer. Langmuir, 1996, 12, 1594-1599.	1.6	37
77	Effect of Lysozyme Adsorption on the Interfacial Rheology of DPPC and Cholesteryl Myristate Films. Langmuir, 2008, 24, 11728-11733.	1.6	36
78	Surface Rheology of a Polymer Monolayer: Effects of Polymer Chain Length and Compression Rate. Langmuir, 2009, 25, 7457-7464.	1.6	36
79	Flow-induced concentration fluctuations in polymer solutions: Structure/property relationships. Rheologica Acta, 1993, 32, 1-8.	1.1	35
80	Influence of phase transition and photoisomerization on interfacial rheology. Physical Review E, 2003, 67, 041601.	0.8	35
81	Dynamic transitions and oscillatory melting of a two-dimensional crystal subjected to shear flow. Journal of Rheology, 2004, 48, 159-173.	1.3	35
82	Instability and Breakup of Model Tear Films. , 2016, 57, 949.		35
83	Interfacial mechanisms for stability of surfactant-laden films. PLoS ONE, 2017, 12, e0175753.	1.1	35
84	Elastomeric Polypropylenes from Unbridged 2-Phenylindene Zirconocene Catalysts:  Temperature Dependence of Crystallinity and Relaxation Properties. Macromolecules, 1999, 32, 3334-3340.	2.2	33
85	Interfacial Rheology of Graft-Type Polymeric Siloxane Surfactantsâ€. Langmuir, 2003, 19, 6349-6356.	1.6	32
86	Disruption of Escherichia coli Amyloid-Integrated Biofilm Formation at the Air–Liquid Interface by a Polysorbate Surfactant. Langmuir, 2013, 29, 920-926.	1.6	32
87	Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology. Journal of Colloid and Interface Science, 2020, 576, 252-263.	5.0	32
88	Comparison of numerical simulations and birefringence measurements in viscoelastic flow between eccentric rotating cylinders. Journal of Rheology, 1992, 36, 1349-1375.	1.3	31
89	Why inhaling salt water changes what we exhale. Journal of Colloid and Interface Science, 2007, 307, 71-78.	5.0	31
90	Development characteristics of drag-reducing surfactant solution flow in a duct. Rheologica Acta, 2004, 43, 232-239.	1.1	30

#	Article	IF	CITATIONS
91	Optical anisotropy in colloidal crystals. Journal of Chemical Physics, 1990, 93, 8294-8299.	1.2	29
92	Interfacial Rheology and Structure of Straight-Chain and Branched Fatty Alcohol Mixtures. Langmuir, 2006, 22, 5321-5327.	1.6	29
93	Temperature controlled tensiometry using droplet microfluidics. Lab on A Chip, 2017, 17, 717-726.	3.1	29
94	Interplay of Hydrogen Bonding and Hydrophobic Interactions to Control the Mechanical Properties of Polymer Multilayers at the Oil–Water Interface. ACS Macro Letters, 2015, 4, 25-29.	2.3	28
95	Single bubble and drop techniques for characterizing foams and emulsions. Advances in Colloid and Interface Science, 2020, 286, 102295.	7.0	28
96	In Situ Optical Studies of Flow-Induced Orientation in a Two-Dimensional Polymer Solution. Macromolecules, 1996, 29, 705-712.	2.2	27
97	Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity. Journal of Rheology, 2020, 64, 799-816.	1.3	27
98	Rheology of glycocalix model at air/water interface. Physical Chemistry Chemical Physics, 2002, 4, 1949-1952.	1.3	26
99	Interfacial shear rheology of highly confined glassy polymers. Soft Matter, 2011, 7, 1994.	1.2	26
100	Rheological Properties of Lipopolymerâ^'Phospholipid Mixtures at the Airâ^'Water Interface:  A Novel Form of Two-Dimensional Physical Gelation. Macromolecules, 2001, 34, 3024-3032.	2.2	25
101	Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil–Water Interface. Langmuir, 2019, 35, 13340-13350.	1.6	25
102	Perpendicular alignment of lymphatic endothelial cells in response to spatial gradients in wall shear stress. Communications Biology, 2020, 3, 57.	2.0	25
103	In-Use Interfacial Stability of Monoclonal Antibody Formulations Diluted in Saline i.v. Bags. Journal of Pharmaceutical Sciences, 2021, 110, 1687-1692.	1.6	25
104	Extensional Flow of a Two-Dimensional Polymer Liquid Crystal. Macromolecules, 1996, 29, 8473-8478.	2.2	24
105	Role of fluid elasticity on the dynamics of rinsing flow by an impinging jet. Physics of Fluids, 2011, 23, .	1.6	24
106	The influence of protein deposition on contact lens tear film stability. Colloids and Surfaces B: Biointerfaces, 2019, 180, 229-236.	2.5	24
107	Rheologically interesting polysaccharides from yeasts. Applied Biochemistry and Biotechnology, 1989, 20-21, 845-867.	1.4	23
108	Surface Rheological Transitions in Langmuir Monolayers of Bi-Competitive Fatty Acids. Langmuir, 2002, 18, 6597-6601.	1.6	23

#	Article	IF	CITATIONS
109	Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer. Langmuir, 2011, 27, 11444-11450.	1.6	23
110	Scaling analysis and mathematical theory of the interfacial stress rheometer. Journal of Rheology, 2014, 58, 999-1038.	1.3	23
111	Contraction and expansion flows of Langmuir monolayers. Journal of Non-Newtonian Fluid Mechanics, 2000, 89, 187-207.	1.0	22
112	Interfacial Rheology and Structure of Straight-Chain and Branched Hexadecanol Mixtures. Industrial & Engineering Chemistry Research, 2006, 45, 6880-6884.	1.8	22
113	Interfacial Flow Processing of Collagen. Langmuir, 2010, 26, 3514-3521.	1.6	22
114	Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil–Water Interfaces. Molecular Pharmaceutics, 2021, 18, 1656-1665.	2.3	22
115	Surface Rheology of Hydrophobically Modified PEG Polymers Associating with a Phospholipid Monolayer at the Airâ^'Water Interface. Langmuir, 2008, 24, 4056-4064.	1.6	21
116	Role of shear-thinning on the dynamics of rinsing flow by an impinging jet. Physics of Fluids, 2012, 24, .	1.6	21
117	Growth Kinetics and Mechanics of Hydrate Films by Interfacial Rheology. Langmuir, 2016, 32, 4203-4209.	1.6	21
118	Dynamic Response of Stereoblock Elastomeric Polypropylene Studied by Rheooptics and X-ray Scattering. 1. Influence of Isotacticity. Macromolecules, 2002, 35, 8488-8497.	2.2	20
119	Component Stressâ^'Strain Behavior and Small-Angle Neutron Scattering Investigation of Stereoblock Elastomeric Polypropyleneâ€. Macromolecules, 2003, 36, 1178-1187.	2.2	20
120	Well-Controlled Living Polymerization of Perylene-Labeled Polyisoprenes and Their Use in Single-Molecule Imaging. Macromolecules, 2006, 39, 8121-8127.	2.2	20
121	Mechanical Behavior of a <i>Bacillus subtilis</i> Pellicle. Journal of Physical Chemistry B, 2016, 120, 6080-6088.	1.2	20
122	Interfacial Rheology of Hydrogen-Bonded Polymer Multilayers Assembled at Liquid Interfaces: Influence of Anchoring Energy and Hydrophobic Interactions. Langmuir, 2016, 32, 6089-6096.	1.6	20
123	Binding partner- and force-promoted changes in αE-catenin conformation probed by native cysteine labeling. Scientific Reports, 2019, 9, 15375.	1.6	20
124	Ablation of water drops suspended in asphaltene/heptol solutions due to spontaneous emulsification. Science Advances, 2019, 5, eaax8227.	4.7	19
125	Phase Behavior and Flow Properties of "Hairy-Rod―Monolayers. Langmuir, 2000, 16, 726-734.	1.6	18
126	Surface Shear Rheology of a Polymerizable Lipopolymer Monolayer. Langmuir, 2002, 18, 2166-2173.	1.6	18

#	Article	IF	CITATIONS
127	Thin Film Formation of Silica Nanoparticle/Lipid Composite Films at the Fluidâ^'Fluid Interface. Langmuir, 2010, 26, 17867-17873.	1.6	18
128	Influence of interfacial elasticity on liquid entrainment in thin foam films. Physical Review Fluids, 2018, 3, .	1.0	18
129	Stress tensor measurement using birefringence in oblique transmission. Rheologica Acta, 1996, 35, 297-302.	1.1	17
130	CHAIN ROTATIONAL DYNAMICS IN MR SUSPENSIONS. International Journal of Modern Physics B, 2002, 16, 2293-2299.	1.0	17
131	Understanding the adsorption and potential tear film stability properties of recombinant human lubricin and bovine submaxillary mucins in an in vitro tear film model. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111257.	2.5	17
132	Foam stability in filtered lubricants containing antifoams. Journal of Colloid and Interface Science, 2020, 567, 1-9.	5.0	17
133	Dynamic Response of Stereoblock Elastomeric Polypropylene Studied by Rheooptics and X-ray Scattering. 2. Orthogonally Oriented Crystalline Chains. Macromolecules, 2002, 35, 8498-8508.	2.2	16
134	Extensional rheometry at interfaces: Analysis of the Cambridge Interfacial Tensiometer. Journal of Rheology, 2012, 56, 1225.	1.3	16
135	Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients. Annals of Biomedical Engineering, 2016, 44, 2261-2272.	1.3	16
136	Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110786.	2.5	16
137	Langmuir Monolayers of Straight-Chain and Branched Hexadecanol and Eicosanol Mixtures. Langmuir, 2008, 24, 14005-14014.	1.6	15
138	Influence of surface rheology on dynamic wetting of droplets coated with insoluble surfactants. Soft Matter, 2011, 7, 7747.	1.2	15
139	Editorial: dynamics and rheology of complex fluid–fluid interfaces. Soft Matter, 2011, 7, 7583.	1.2	15
140	Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition. PLoS ONE, 2014, 9, e105512.	1.1	15
141	Influence of Lipid Coatings on Surface Wettability Characteristics of Silicone Hydrogels. Langmuir, 2015, 31, 3820-3828.	1.6	15
142	Integrated microfluidic platform for instantaneous flow and localized temperature control. RSC Advances, 2015, 5, 85620-85629.	1.7	15
143	Flowering in bursting bubbles with viscoelastic interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
144	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ€inâ€Liquid Printing. Advanced Materials Interfaces, 2022, 9, .	1.9	15

#	Article	IF	CITATIONS
145	Transient Birefringence of Elastomeric Polypropylene Subjected to Step Shear Strain. Macromolecules, 1999, 32, 8094-8099.	2.2	14
146	Non-Newtonian Rheology of Liquid Crystalline Polymer Monolayers. Langmuir, 2000, 16, 4325-4332.	1.6	14
147	Rheo-optical studies of concentrated polystyrene solutions subjected to transient simple shear flow. Journal of Polymer Science, Polymer Physics Edition, 1985, 23, 575-589.	1.0	13
148	Influence of Subphase Conditions on Interfacial Viscoelastic Properties of Synthetic Lipids with Gentiobiose Head Groups. Journal of Physical Chemistry B, 2004, 108, 3211-3214.	1.2	13
149	Charge Interaction between Particle-Laden Fluid Interfaces. Langmuir, 2010, 26, 3160-3164.	1.6	13
150	Multiphase flow of miscible liquids: jets and drops. Experiments in Fluids, 2015, 56, 1.	1.1	13
151	Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. Journal of the Royal Society Interface, 2016, 13, 20160823.	1.5	13
152	Hyperspectral imaging for dynamic thin film interferometry. Scientific Reports, 2020, 10, 11378.	1.6	13
153	Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability. Soft Matter, 2020, 16, 3981-3990.	1.2	13
154	Evaporation-driven solutocapillary flow of thin liquid films over curved substrates. Physical Review Fluids, 2019, 4, .	1.0	13
155	Engineering Insulin Cold Chain Resilience to Improve Global Access. Biomacromolecules, 2021, 22, 3386-3395.	2.6	12
156	Note: End Effects in Flow Birefringence Measurements. Journal of Rheology, 1989, 33, 771-779.	1.3	11
157	Development of a double-beam rheo-optical analyzer for full tensor measurement of optical anisotropy in complex fluid flow. Rheologica Acta, 2002, 41, 448-455.	1.1	11
158	The orientation dynamics of rigid rod suspensions under extensional flow. Journal of Rheology, 2003, 47, 371-388.	1.3	11
159	Bubble Coalescence at Wormlike Micellar Solution–Air Interfaces. Langmuir, 2020, 36, 11836-11844.	1.6	11
160	Physicochemical characteristics of droplet interface bilayers. Advances in Colloid and Interface Science, 2022, 304, 102666.	7.0	11
161	Dynamics of adsorbed polymer chains subjected to flow: The dumbbell model. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 151-157.	1.0	10
162	The stress jump of a semirigid macromolecule after shear: Comparison of the elastic stress to the birefringence. Journal of Rheology, 1995, 39, 659-672.	1.3	10

#	Article	IF	CITATIONS
163	Microstructural Dynamics of a Homopolymer Melt Investigated Using Two-Dimensional Raman Scattering. Macromolecules, 1996, 29, 966-972.	2.2	10
164	ORIENTATION DYNAMICS OF MAGNETORHEOLOGICAL FLUIDS SUBJECT TO ROTATING EXTERNAL FIELDS. International Journal of Modern Physics B, 2001, 15, 758-766.	1.0	10
165	Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates. Journal of Colloid and Interface Science, 2015, 449, 428-435.	5.0	10
166	Impact of Compressibility on the Control of Bubble-Pressure Tensiometers. Langmuir, 2016, 32, 12031-12038.	1.6	10
167	Dewetting characteristics of contact lenses coated with wetting agents. Journal of Colloid and Interface Science, 2022, 614, 24-32.	5.0	10
168	Rheoâ€Optical Studies of Polyelectrolyte Solutions in Simple Shear Flow. Journal of Rheology, 1985, 29, 943-954.	1.3	9
169	Optical measurements of particle orientation in magnetic media. Journal of Applied Physics, 1988, 63, 1687-1690.	1.1	9
170	Structure and optical anisotropies of critical polymer solutions in electric fields. Journal of Chemical Physics, 1994, 101, 1679-1686.	1.2	9
171	Orientation dynamics of a polymer melt studied by polarizationâ€modulated laser Raman scattering. Journal of Rheology, 1994, 38, 1101-1125.	1.3	9
172	Isotropicâ^'Nematic Phase Transitions of Lyotropic, Two-Dimensional Liquid Crystalline Polymer Solutions. Macromolecules, 2001, 34, 6972-6977.	2.2	9
173	Isovaleric, Methylmalonic, and Propionic Acid Decrease Anesthetic EC50 in Tadpoles, Modulate Glycine Receptor Function, and Interact with the Lipid 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphocholine. Anesthesia and Analgesia, 2009, 108, 1538-1545.	1.1	9
174	Interfacial and Fluorescence Studies on Stereoblock Poly(<i>N</i> -isopropylacryl amide)s. Langmuir, 2012, 28, 14792-14798.	1.6	9
175	The shape evolution of liquid droplets in miscible environments. Journal of Fluid Mechanics, 2018, 852, 422-452.	1.4	9
176	Surfactant-laden bubble dynamics under porous polymer films. Journal of Colloid and Interface Science, 2020, 575, 298-305.	5.0	9
177	Mucinâ€Like Glycoproteins Modulate Interfacial Properties of a Mimetic Ocular Epithelial Surface. Advanced Science, 2021, 8, e2100841.	5.6	9
178	Structure and dynamics of concentration fluctuations in a polymer blend solution under shear flow. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2461-2474.	2.4	8
179	Rheo-optical characterization (flow-birefringence and flow-dichroism) of the Tobacco Mosaic Virus. Macromolecular Chemistry and Physics, 1995, 196, 63-74.	1.1	8
180	Effects of Temperature and Chemical Modification on Polymer Langmuir Filmsâ€. Journal of Physical Chemistry B, 2006, 110, 22285-22290.	1.2	8

#	Article	IF	CITATIONS
181	Spreading of miscible liquids. Physical Review Fluids, 2016, 1, .	1.0	8
182	Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. Lab on A Chip, 2022, 22, 2315-2330.	3.1	8
183	Linear infrared dichroism by a double modulation technique. Makromolekulare Chemie Macromolecular Symposia, 1991, 52, 23-40.	0.6	7
184	Orientation dynamics of side chain polymers subject to electric fields. Part I. Steady state. Acta Polymerica, 1993, 44, 39-49.	1.3	7
185	Polarizationâ€modulated Raman scattering measurements of nematic liquid crystal orientation. Review of Scientific Instruments, 1996, 67, 3924-3930.	0.6	7
186	Surface Pressure-Induced Isotropicâ^'Nematic Transition in Polymer MonolayersEffect of Solvent Molecules. Langmuir, 2000, 16, 4319-4324.	1.6	7
187	Microstructural changes of a binary polymer blend in simple shear flow across the phase boundary. Journal of Rheology, 2003, 47, 143-161.	1.3	7
188	Enhanced particle removal using viscoelastic fluids. Journal of Rheology, 2014, 58, 63-88.	1.3	7
189	Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress. Molecular Biology of the Cell, 2019, 30, 923-931.	0.9	7
190	Oscillatory spontaneous dimpling in evaporating curved thin films. Journal of Fluid Mechanics, 2020, 889, .	1.4	7
191	Axisymmetry breaking, chaos, and symmetry recovery in bubble film thickness profiles due to evaporation-induced Marangoni flows. Physics of Fluids, 2021, 33, 012112.	1.6	7
192	Infrared linear dichroism spectroscopy by a double modulation technique. Polymer Bulletin, 1990, 23, 447-454.	1.7	6
193	Dynamic response of a nearâ€critical polymer blend solution under oscillatory shear flow. Journal of Rheology, 1996, 40, 153-166.	1.3	6
194	3-Hydroxybutyric Acid Interacts with Lipid Monolayers at Concentrations That Impair Consciousness. Langmuir, 2013, 29, 1948-1955.	1.6	6
195	Instabilities and elastic recoil of the two-fluid circular hydraulic jump. Experiments in Fluids, 2014, 55, 1.	1.1	6
196	Evaporation-induced Rayleigh–Taylor instabilities in polymer solutions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190533.	1.6	6
197	Rheological Behavior of Precursor PPV Monolayers. Langmuir, 2004, 20, 11517-11522.	1.6	5
198	Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer. Journal of Rheology, 2015, 59, 33-50.	1.3	5

#	Article	IF	CITATIONS
199	Unraveling <i>Escherichia coli</i> 's Cloak: Identification of Phosphoethanolamine Cellulose, Its Functions, and Applications. Microbiology Insights, 2019, 12, 117863611986523.	0.9	5
200	Tuning Corneal Epithelial Cell Adhesive Strength with Varying Crosslinker Content in Silicone Hydrogel Materials. Translational Vision Science and Technology, 2020, 9, 3.	1.1	5
201	Surface energy and separation mechanics of droplet interface phospholipid bilayers. Journal of the Royal Society Interface, 2021, 18, 20200860.	1.5	5
202	Determining the yield stress of a Biopolymer-bound Soil Composite for extrusion-based 3D printing applications. Construction and Building Materials, 2021, 305, 124730.	3.2	5
203	Particle-Laden Interfaces: Rheology, Coalescence, Adhesion and Buckling. , 2006, , 169-185.		4
204	Spreading of rinsing liquids across a horizontal rotating substrate. Physical Review Fluids, 2019, 4, .	1.0	4
205	A Mucin-Deficient Ocular Surface Mimetic Platform for Interrogating Drug Effects on Biolubrication, Antiadhesion Properties, and Barrier Functionality. ACS Applied Materials & Interfaces, 2022, 14, 18016-18030.	4.0	4
206	Flow-Enhanced Desorption of Adsorbed Flexible Polymer Chains. ACS Symposium Series, 1984, , 67-76.	0.5	3
207	A rheoâ€optical study of nearâ€critical polymer solutions under oscillatory shear flow. Journal of Rheology, 1995, 39, 893-906.	1.3	3
208	Flow-Induced Deformation and Relaxation Processes of Polydomain Structures in Langmuir Monolayer. ACS Symposium Series, 1998, , 43-56.	0.5	3
209	On the Existence of a Stressâ ~ Optical Relation in Immiscible Polymer Blends. Langmuir, 2000, 16, 3740-3747.	1.6	3
210	Evolution of rivulets during spreading of an impinging water jet on a rotating, precoated substrate. Physics of Fluids, 2019, 31, 082104.	1.6	3
211	Instability and symmetry breaking in binary evaporating thin films over a solid spherical dome. Journal of Fluid Mechanics, 2021, 915, .	1.4	3
212	Dynamics of freely suspended drops translating through miscible environments. Physics of Fluids, 2021, 33, 033106.	1.6	3
213	Optical rheometry of multicomponent polymer liquids. Macromolecular Symposia, 1995, 98, 997-1003.	0.4	2
214	Carbon compositional analysis of hydrogel contact lenses by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2019, 102, 47-52.	1.5	2
215	Placing Marangoni instabilities under arrest. Physical Review Fluids, 2016, 1, .	1.0	2
216	A shape stability model for 3D printable biopolymer-bound soil composite. Construction and Building Materials, 2022, 321, 126337.	3.2	2

#	Article	IF	CITATIONS
217	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ€inâ€Liquid Printing (Adv.) Tj ET(Qq1,1 0.78	34314 rgBT /(
218	Influence of salt on the formation and separation of droplet interface bilayers. Physics of Fluids, 2022, 34, .	1.6	1
219	Extensional Viscometry of Polymer Solutions. ACS Symposium Series, 1991, , 48-60.	0.5	0
220	The Froth Thickens. Physics Magazine, 2020, 13, .	0.1	0
221	10.1063/5.0035065.1., 2021, , .		0
222	CHAIN ROTATIONAL DYNAMICS IN MR SUSPENSIONS. , 2002, , .		0
223	Abstract 269: Collagen Topographical Patterning Modulates Endothelial Cell Morphology, Gene Expression and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	1.1	0
224	Abstract 396: Nanoscale Extracellular Matrix Alters Endothelial Function Under Disturbed Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0