
Erja E Kerkelä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795530/publications.pdf Version: 2024-02-01

<u>Ερίλ Ε Κερκεί Δ΄</u>

#	Article	IF	CITATIONS
1	Human Mesenchymal Stromal Cell Secretome Promotes the Immunoregulatory Phenotype and Phagocytosis Activity in Human Macrophages. Cells, 2020, 9, 2142.	1.8	7
2	Label-free characterization and real-time monitoring of cell uptake of extracellular vesicles. Biosensors and Bioelectronics, 2020, 168, 112510.	5.3	16
3	Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1350-1362.	1.2	24
4	Red blood cell transfusion in southern Finland from 2011 to 2016: a quality audit. Transfusion Medicine, 2019, 29, 41-47.	0.5	12
5	Phospholipid composition of packed red blood cells and that of extracellular vesicles show a high resemblance and stability during storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1-8.	1.2	28
6	Mesenchymal Stromal Cells and Their Extracellular Vesicles Enhance the Anti-Inflammatory Phenotype of Regulatory Macrophages by Downregulating the Production of Interleukin (IL)-23 and IL-22. Frontiers in Immunology, 2018, 9, 771.	2.2	82
7	Reply: Adenosine Producing Mesenchymal Stromal Cells. Stem Cells, 2017, 35, 1649-1650.	1.4	1
8	Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells. Stem Cells, 2016, 34, 781-790.	1.4	80
9	Realâ€Time Labelâ€Free Monitoring of Nanoparticle Cell Uptake. Small, 2016, 12, 6289-6300.	5.2	26
10	The effects of culture conditions on the functionality of efficiently obtained mesenchymal stromal cells from human cord blood. Cytotherapy, 2016, 18, 423-437.	0.3	7
11	The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Research and Therapy, 2015, 6, 11.	2.4	153
12	Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells from the Brain after Intra-arterial Infusion in Rats. Cell Transplantation, 2015, 24, 819-828.	1.2	27
13	Safety and biodistribution study of bone marrow–derived mesenchymal stromal cells and mononuclear cells and the impact of the administration route in an intact porcine model. Cytotherapy, 2015, 17, 392-402.	0.3	66
14	Unexpected Complication in a Rat Stroke Model: Exacerbation of Secondary Pathology in the Thalamus by Subacute Intraarterial Administration of Human Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 363-366.	2.4	12
15	Human Umbilical Cord Bloodâ€Derived Mesenchymal Stromal Cells Display a Novel Interaction between Pâ€ S electin and Galectinâ€1. Scandinavian Journal of Immunology, 2014, 80, 12-21.	1.3	25
16	Human bone marrow mesenchymal stem/stromal cells produce efficient localization in the brain and enhanced angiogenesis after intra-arterial delivery in rats with cerebral ischemia, but this is not translated to behavioral recovery. Behavioural Brain Research, 2014, 259, 50-59.	1.2	41
17	Transient Proteolytic Modification of Mesenchymal Stromal Cells Increases Lung Clearance Rate and Targeting to Injured Tissue. Stem Cells Translational Medicine, 2013, 2, 510-520.	1.6	34
18	Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats. Experimental Neurology, 2013, 239, 158-162.	2.0	70

Erja E Kerkelä

#	Article	IF	CITATIONS
19	2D and 3D Self-Assembling Nanofiber Hydrogels for Cardiomyocyte Culture. BioMed Research International, 2013, 2013, 1-12.	0.9	30
20	The Effect of Human and Mouse Fibroblast Feeder Cells on Cardiac Differentiation of Human Pluripotent Stem Cells. Stem Cells International, 2012, 2012, 1-10.	1.2	18
21	Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. DMM Disease Models and Mechanisms, 2012, 5, 220-230.	1.2	264
22	Electrical Field Stimulation with a Novel Platform: Effect on Cardiomyocyte Gene Expression but not on Orientation. International Journal of Biomedical Science, 2012, 8, 109-20.	0.5	7
23	Differentiation, Characterization and Applications of Human Embryonic Stem Cell –Derived Cardiomyocytes. , 2011, , .		1
24	All Titanium Microelectrode Array for Field Potential Measurements from Neurons and Cardiomyocytes—A Feasibility Study. Micromachines, 2011, 2, 394-409.	1.4	7
25	Averaging in vitro cardiac field potential recordings obtained with microelectrode arrays. Computer Methods and Programs in Biomedicine, 2011, 104, 199-205.	2.6	14
26	Stimulation of human embryonic stem cellâ€derived cardiomyocytes on thinâ€film microelectrodes. Biotechnology Journal, 2011, 6, 600-603.	1.8	5
27	Spatial and temporal expression pattern of germ layer markers during human embryonic stem cell differentiation in embryoid bodies. Histochemistry and Cell Biology, 2010, 133, 595-606.	0.8	46
28	Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype. Experimental Biology and Medicine, 2010, 235, 522-530.	1.1	60
29	A Defined and Xeno-Free Culture Method Enabling the Establishment of Clinical-Grade Human Embryonic, Induced Pluripotent and Adipose Stem Cells. PLoS ONE, 2010, 5, e10246.	1.1	138
30	Transcriptome Profiling of Human Pre-Implantation Development. PLoS ONE, 2009, 4, e7844.	1.1	103
31	ROCK2 allelic variants are not associated with pre-eclampsia susceptibility in the Finnish population. Molecular Human Reproduction, 2009, 15, 443-449.	1.3	7
32	Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions—a comparison of multiple cell lines. Annals of Medicine, 2009, 41, 360-370.	1.5	60
33	Exclusion of coding-region mutations in luteinizing hormone and follicle-stimulating hormone receptor genes as the cause of ovarian hyperstimulation syndrome. Fertility and Sterility, 2007, 87, 603-606.	0.5	34
34	Distinct sets of developmentally regulated genes that are expressed by human oocytes and human embryonic stem cells. Fertility and Sterility, 2007, 87, 677-690.	0.5	39
35	Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Experimental Dermatology, 2003, 12, 109-125.	1.4	271
36	Epilysin (MMP-28) Expression is Associated with Cell Proliferation During Epithelial Repair. Journal of Investigative Dermatology, 2002, 119, 14-21.	0.3	104

Erja E Kerkelä

#	Article	IF	CITATIONS
37	Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. Journal of Pathology, 2002, 198, 258-269.	2.1	88
38	Human macrophage metalloelastase (MMP-12) expression is induced in chondrocytes during fetal development and malignant transformation. Bone, 2001, 29, 487-493.	1.4	56
39	Differential patterns of stromelysin-2 (MMP-10) and MT1-MMP (MMP-14) expression in epithelial skin cancers. British Journal of Cancer, 2001, 84, 659-669.	2.9	77
40	Expression of Human Macrophage Metalloelastase (MMP-12) by Tumor Cells in Skin Cancer. Journal of Investigative Dermatology, 2000, 114, 1113-1119.	0.3	88
41	Mapping of Five New Putative Anion Transporter Genes in Human and Characterization of SLC26A6, A Candidate Gene for Pancreatic Anion Exchanger. Genomics, 2000, 70, 102-112.	1.3	187
42	Accumulation of Matrilysin (MMP-7) and Macrophage Metalloelastase (MMP-12) in Actinic Damage. Journal of Investigative Dermatology, 1999, 113, 664-672.	0.3	113
43	Characterization of cDNAs for mouse lysyl hydroxylase 1, 2 and 3, their phylogenetic analysis and tissue-specific expression in the mouse. Matrix Biology, 1999, 18, 325-329.	1.5	45