
Michael S Wolfe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Presenilin/Î ³ -Secretase Activity Is Located in Acidic Compartments of Live Neurons. Journal of Neuroscience, 2022, 42, 145-154.	3.6	19
2	Mechanism of Tripeptide Trimming of Amyloid β-Peptide 49 by γ-Secretase. Journal of the American Chemical Society, 2022, 144, 6215-6226.	13.7	26
3	Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer's Disease. Molecules, 2021, 26, 388.	3.8	15
4	Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate γ-secretase function in generating Alzheimer-causing Al² peptides. Journal of Biological Chemistry, 2021, 296, 100393.	3.4	22
5	Targeting γ-secretase for familial Alzheimer's disease. Medicinal Chemistry Research, 2021, 30, 1321-1327.	2.4	4
6	Familial Alzheimer's disease mutations in amyloid protein precursor alter proteolysis by γ-secretase to increase amyloid β-peptides of ≥45 residues. Journal of Biological Chemistry, 2021, 296, 100281.	3.4	34
7	Design of Transmembrane Mimetic Structural Probes to Trap Different Stages of γ-Secretase–Substrate Interaction. Journal of Medicinal Chemistry, 2021, 64, 15367-15378.	6.4	4
8	Substrate-based chemical probes for Alzheimer's γ-secretase. Medicinal Chemistry Research, 2020, 29, 1122-1132.	2.4	2
9	Mechanisms of Î ³ -Secretase Activation and Substrate Processing. ACS Central Science, 2020, 6, 969-983.	11.3	34
10	Design of Substrate Transmembrane Mimetics as Structural Probes for Î ³ -Secretase. Journal of the American Chemical Society, 2020, 142, 3351-3355.	13.7	11
11	Designed Helical Peptides as Functional Probes for Î ³ -Secretase. Biochemistry, 2019, 58, 4398-4407.	2.5	4
12	Structure and Function of the \hat{I}^3 -Secretase Complex. Biochemistry, 2019, 58, 2953-2966.	2.5	78
13	The amyloid-beta forming tripeptide cleavage mechanism of \hat{I}^3 -secretase. ELife, 2016, 5, .	6.0	140
14	A Tribute to Ronald T. Borchardt—Teacher, Mentor, Scientist, Colleague, Leader, Friend, and Family Man. Journal of Pharmaceutical Sciences, 2016, 105, 370-385.	3.3	4
15	Transmembrane Substrate Determinants for γ-Secretase Processing of APP CTFβ. Biochemistry, 2016, 55, 5675-5688.	2.5	40
16	P4â€071: The Amyloidâ€B Generating Triâ€Peptide Cleavage Mechanism of Gammaâ€Secretase: Implications for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P1041.	0.8	3
17	Sorting Out Presenilins in Alzheimer's Disease. Cell, 2016, 166, 13-15.	28.9	28
18	Nicastrin functions to sterically hinder γ-secretase–substrate interactions driven by substrate transmembrane domain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E509-18.	7.1	122

MICHAEL S WOLFE

#	Article	IF	CITATIONS
19	P1-082: Investigation of substrate determinants for proteolysis of app ctfl² by gamma-secretase. , 2015, 11, P370-P371.		0
20	Cutting in on a secretase pas de deux. Cell Research, 2015, 25, 1091-1092.	12.0	0
21	P4-221: Nicastrin functions as a molecular gatekeeper to a high-affinity Î ³ -secretase-substrate interaction driven by substrate transmembrane domain. , 2015, 11, P864-P864.		1
22	Structure of nicastrin unveils secrets of γ-secretase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14643-14644.	7.1	7
23	Unlocking truths of γ-secretase in Alzheimer's disease: what is the translational potential?. Future Neurology, 2014, 9, 419-429.	0.5	12
24	Targeting mRNA for Alzheimer's and Related Dementias. Scientifica, 2014, 2014, 1-13.	1.7	10
25	Î ³ -Secretase: A Horseshoe Structure Brings Good Luck. Cell, 2014, 158, 247-249.	28.9	6
26	Template-directed synthesis of a small molecule-antisense conjugate targeting an mRNA structure. Bioorganic Chemistry, 2014, 54, 7-11.	4.1	10
27	Alternative polyadenylation and miRâ€34 family members regulate tau expression. Journal of Neurochemistry, 2013, 127, 739-749.	3.9	116
28	Presenilins and Â-Secretase: Structure, Function, and Role in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006304-a006304.	6.2	375
29	The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target. Scientifica, 2012, 2012, 1-20.	1.7	55
30	Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Research, 2012, 40, 9836-9849.	14.5	43
31	Introduction to Special Issue on Alzheimer's Disease. Journal of Medicinal Chemistry, 2012, 55, 8977-8978.	6.4	10
32	A Gâ€Rich element forms a Gâ€quadruplex and regulates BACE1 mRNA alternative splicing. Journal of Neurochemistry, 2012, 121, 763-773.	3.9	84
33	Molecular Characterization of Disrupted in Schizophrenia-1 Risk Variant S704C Reveals the Formation of Altered Oligomeric Assembly. Journal of Biological Chemistry, 2011, 286, 44266-44276.	3.4	26
34	Giving Alzheimer's the Old One-Two. Cell, 2010, 142, 194-196.	28.9	9
35	S2-03-01: Splicing and dicing in APP processing: Targeting proteases and mRNAs that regulate A-beta production. , 2010, 6, S93-S93.		0
36	Tau Mutations in Neurodegenerative Diseases. Journal of Biological Chemistry, 2009, 284, 6021-6025.	3.4	140

MICHAEL S WOLFE

#	Article	IF	CITATIONS
37	Structural Basis for Stabilization of the Tau Pre-mRNA Splicing Regulatory Element by Novantrone (Mitoxantrone). Chemistry and Biology, 2009, 16, 557-566.	6.0	82
38	Mitoxantrone Analogues as Ligands for a Stemâ^'Loop Structure of Tau Pre-mRNA. Journal of Medicinal Chemistry, 2009, 52, 6523-6526.	6.4	52
39	Promotion of BACE1 mRNA Alternative Splicing Reduces Amyloid β-Peptide Production. Journal of Biological Chemistry, 2008, 283, 18694-18701.	3.4	43
40	Identification of Tau Stem Loop RNA Stabilizers. Journal of Biomolecular Screening, 2007, 12, 789-799.	2.6	35
41	Presenilin: Running with Scissors in the Membrane. Cell, 2007, 131, 215-221.	28.9	342
42	When loss is gain: reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. EMBO Reports, 2007, 8, 136-140.	4.5	183
43	The γ-Secretase Complex: Membrane-Embedded Proteolytic Ensemble. Biochemistry, 2006, 45, 7931-7939.	2.5	191
44	Shutting Down Alzheimer's. Scientific American, 2006, 294, 72-79.	1.0	112
45	Stabilization of the Tau Exon 10 Stem Loop Alters Pre-mRNA Splicing. Journal of Biological Chemistry, 2006, 281, 23302-23306.	3.4	94
46	The secretases of Alzheimer's disease. Current Topics in Developmental Biology, 2003, 54, 233-261.	2.2	31
47	γ-Secretase as a Target for Alzheimers Disease. Current Topics in Medicinal Chemistry, 2002, 2, 371-383.	2.1	38
48	Therapeutic strategies for Alzheimer's disease. Nature Reviews Drug Discovery, 2002, 1, 859-866.	46.4	167
49	Rapid Notch1 Nuclear Translocation after Ligand Binding Depends on Presenilinâ€associated γâ€5ecretase Activity. Annals of the New York Academy of Sciences, 2000, 920, 223-226.	3.8	29
50	A Substrate-Based Difluoro Ketone Selectively Inhibits Alzheimer's Î ³ -Secretase Activity. Journal of Medicinal Chemistry, 1998, 41, 6-9.	6.4	219