
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiesel production from camelina oil: Present status and future perspectives. Food and Energy Security, 2023, 12, e340.	2.0	9
2	Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environmental Microbiology, 2022, 24, 2817-2836.	1.8	4
3	Carbon dioxide responsiveness mitigates rice yield loss under high night temperature. Plant Physiology, 2022, 188, 285-300.	2.3	12
4	Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. Molecular Plant, 2022, 15, 45-64.	3.9	23
5	Unraveling the contribution of <scp> <i>OsSOS2</i> </scp> in conferring salinity and drought tolerance in a highâ€yielding rice. Physiologia Plantarum, 2022, 174, e13638.	2.6	23
6	High lysine and high proteinâ€containing salinityâ€ŧolerant rice grains (<i>Oryza sativa cv</i> IR64). Food and Energy Security, 2022, 11, .	2.0	2
7	Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security, 2022, 11, .	2.0	6
8	<i><scp>OsCyp2â€P</scp></i> , an auxinâ€responsive cyclophilin, regulates Ca ²⁺ calmodulin interaction for an ionâ€mediated stress response in rice. Physiologia Plantarum, 2022, 174, e13631.	2.6	6
9	Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. International Journal of Molecular Sciences, 2022, 23, 1687.	1.8	12
10	Shaping the root system architecture in plants for adaptation to drought stress. Physiologia Plantarum, 2022, 174, e13651.	2.6	39
11	Seedlingâ€stage salinity tolerance in rice: Decoding the role of transcription factors. Physiologia Plantarum, 2022, 174, e13685.	2.6	6
12	Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress. Physiology and Molecular Biology of Plants, 2022, 28, 899-910.	1.4	12
13	lon transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 2022, 174, e13702.	2.6	43
14	Glyoxalase <scp>III</scp> enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. Physiologia Plantarum, 2022, 174, e13693.	2.6	6
15	<scp>DTH8</scp> overexpression induces early flowering, boosts yield, and improves stress recovery in rice cv <scp>IR64</scp> . Physiologia Plantarum, 2022, 174, e13691.	2.6	4
16	Raising crops for dry and saline lands: Challenges and the way forward. Physiologia Plantarum, 2022, 174, .	2.6	4
17	How doÂrice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. Photosynthesis Research, 2021, 150, 117-135.	1.6	32
18	The chloride channels: Silently serving the plants. Physiologia Plantarum, 2021, 171, 688-702.	2.6	23

#	Article	IF	CITATIONS
19	Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. Physiologia Plantarum, 2021, 172, 1352-1362.	2.6	27
20	Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiologia Plantarum, 2021, 171, 653-676.	2.6	68
21	The Journey from Two-Step to Multi-Step Phosphorelay Signaling Systems. Current Genomics, 2021, 22, 59-74.	0.7	13
22	Tracing the Evolution of Plant Glyoxalase III Enzymes for Structural and Functional Divergence. Antioxidants, 2021, 10, 648.	2.2	10
23	Increased Cuticle Waxes by Overexpression of WSD1 Improves Osmotic Stress Tolerance in Arabidopsis thaliana and Camelina sativa. International Journal of Molecular Sciences, 2021, 22, 5173.	1.8	19
24	Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiology and Biochemistry, 2021, 163, 15-25.	2.8	51
25	Gaining Acceptance of Novel Plant Breeding Technologies. Trends in Plant Science, 2021, 26, 575-587.	4.3	34
26	Molecular mechanisms of salinity tolerance in rice. Crop Journal, 2021, 9, 506-520.	2.3	91
27	Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. Plant Cell Reports, 2021, 40, 2037-2046.	2.8	6
28	Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses. International Journal of Molecular Sciences, 2021, 22, 6119.	1.8	37
29	Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry, 2021, 166, 593-604.	2.8	24
30	Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 2021, 22, 9826.	1.8	39
31	Survival Strategies in Halophytes: Adaptation and Regulation. , 2021, , 1591-1612.		0
32	<i>DPS1</i> regulates cuticle development and leaf senescence in rice. Food and Energy Security, 2021, 10, e273.	2.0	20
33	Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Current Genomics, 2021, 22, 450-467.	0.7	7
34	Rice mutants with tolerance to multiple abiotic stresses show high constitutive abundance of stress-related transcripts and proteins. Australian Journal of Crop Science, 2021, , 12-21.	0.1	1
35	Genetic Improvement of Rice for Food and Nutritional Security. , 2021, , 13-32.		1
36	Methylglyoxal-glyoxalase system as a possible selection module for raising marker-safe plants in rice. Physiology and Molecular Biology of Plants, 2021, 27, 2579-2588.	1.4	3

#	Article	IF	CITATIONS
37	Genetic Basis of Carnivorous Leaf Development. Frontiers in Plant Science, 2021, 12, 825289.	1.7	1
38	The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. Journal of Experimental Botany, 2020, 71, 684-698.	2.4	37
39	The quest for osmosensors in plants. Journal of Experimental Botany, 2020, 71, 595-607.	2.4	37
40	Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. Journal of Experimental Botany, 2020, 71, 653-668.	2.4	82
41	Integrating the dynamics of yield traits in rice in response to environmental changes. Journal of Experimental Botany, 2020, 71, 490-506.	2.4	39
42	Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Journal of Experimental Botany, 2020, 71, 470-479.	2.4	184
43	Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany, 2020, 71, 451-456.	2.4	120
44	Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Frontiers in Microbiology, 2020, 11, 509919.	1.5	55
45	Pitchers of Nepenthes khasiana express several digestive-enzyme encoding genes, harbor mostly fungi and probably evolved through changes in the expression of leaf polarity genes. BMC Plant Biology, 2020, 20, 524.	1.6	5
46	Sensing and signalling in plant stress responses: ensuring sustainable food security in an era of climate change. New Phytologist, 2020, 228, 823-827.	3.5	6
47	Gene Expression Dynamics in Rice Peduncles at the Heading Stage. Frontiers in Genetics, 2020, 11, 584678.	1.1	7
48	Expression dynamics of glyoxalase genes under high temperature stress in plants. Plant Physiology Reports, 2020, 25, 533-548.	0.7	4
49	Celebrating the contributions of Govindjee after his retirement: 1999–2020. New Zealand Journal of Botany, 2020, 58, 422-460.	0.8	2
50	Plant histidine kinases: Targets for crop improvement. , 2020, , 101-109.		0
51	Innovative plant breeding could deliver crop revolution. Nature, 2020, 577, 622-622.	13.7	4
52	Reassessing plant glyoxalases: large family and expanding functions. New Phytologist, 2020, 227, 714-721.	3.5	35
53	Draft Genome Sequence of Bacillus marisflavi CK-NBRI-03, Isolated from Agricultural Soil. Microbiology Resource Announcements, 2020, 9, .	0.3	2
54	Survival Strategies in Halophytes: Adaptation and Regulation. , 2020, , 1-22.		0

Survival Strategies in Halophytes: Adaptation and Regulation. , 2020, , 1-22. 54

#	Article	IF	CITATIONS
55	Satish Chandra Maheshwari (1933–2019)—a brilliant, passionate and an outstanding shining light for all of plant biology. Physiology and Molecular Biology of Plants, 2020, 26, 1087-1098.	1.4	3
56	CO2 uptake and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. Photosynthesis Research, 2019, 142, 211-227.	1.6	27
57	Molecular Mechanism and Signaling Response of Heavy Metal Stress Tolerance in Plants. , 2019, , 29-47.		8
58	Mapping the â€~early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. Rice, 2019, 12, 3.	1.7	37
59	A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice, 2019, 12, 58.	1.7	50
60	ASYMMETRIC LEAVES1 and REVOLUTA are the key regulatory genes associated with pitcher development in Nepenthes khasiana. Scientific Reports, 2019, 9, 6318.	1.6	10
61	Functional Genomics Approach Towards Dissecting Out Abiotic Stress Tolerance Trait in Plants. Sustainable Development and Biodiversity, 2019, , 1-24.	1.4	3
62	Molecular Chaperones: Key Players of Abiotic Stress Response in Plants. Sustainable Development and Biodiversity, 2019, , 125-165.	1.4	3
63	Recent Advancements in Developing Salinity Tolerant Rice. , 2019, , 87-112.		3
64	Growth and secretome analysis of possible synergistic interaction between greenÂalgae and cyanobacteria. Journal of Bioscience and Bioengineering, 2019, 127, 213-221.	1.1	27
65	The Two-Component System: Transducing Environmental and Hormonal Signals. , 2019, , 247-278.		4
66	Perception of Stress Environment in Plants. , 2019, , 163-186.		2
67	Draft Genome Sequence of a Potential Plant Growth-Promoting Rhizobacterium, <i>Pseudomonas</i> sp. Strain CK-NBRI-02. Microbiology Resource Announcements, 2019, 8, .	0.3	3
68	How to survive in a salty desert: An adventure study with Suaeda fruticosa. The Journal of Plant Science Research, 2019, 35, 257-261.	0.1	6
69	Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry, 2018, 293, 5035-5043.	1.6	43
70	Photosynthesis and salinity: are these mutually exclusive?. Photosynthetica, 2018, 56, 366-381.	0.9	61
71	Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports, 2018, 8, 4072.	1.6	49
72	Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell and Environment, 2018, 41, 1186-1200.	2.8	95

ASHWANI PAREEK

#	Article	IF	CITATIONS
73	Knockdown of an inflorescence meristemâ€specific cytokinin oxidase – OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell and Environment, 2018, 41, 936-946.	2.8	122
74	Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Plant, Cell and Environment, 2018, 41, 947-969.	2.8	51
75	Stepping forward and taking reverse as we move ahead in genetics. Indian Journal of Plant Physiology, 2018, 23, 609-611.	0.8	1
76	Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. Biotechnology for Biofuels, 2018, 11, 335.	6.2	12
77	Forward and reverse genetics approaches for combined stress tolerance in rice. Indian Journal of Plant Physiology, 2018, 23, 630-646.	0.8	27
78	Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice. , 2018, , .		12
79	Cyclophilin. , 2018, , 1265-1275.		0
80	Comparison and utilization of potential green algal and cyanobacterial species for power generation through algal microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 451-457.	1.2	4
81	Molecular cloning and characterization of genes encoding FK506-binding proteins (FKBPs) in wheat (Triticum aestivum L.). Journal of Plant Biochemistry and Biotechnology, 2017, 26, 467-477.	0.9	Ο
82	A temperature-responsive gene in sorghum encodes a glycine-rich protein that interacts with calmodulin. Biochimie, 2017, 137, 115-123.	1.3	7
83	Mapping the â€~Two-component system' network in rice. Scientific Reports, 2017, 7, 9287.	1.6	41
84	Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods in Molecular Biology, 2017, 1679, 83-95.	0.4	16
85	Metabolic shift in sugars and amino acids regulates sprouting in Saffron corm. Scientific Reports, 2017, 7, 11904.	1.6	32
86	A nuclearâ€localized rice glyoxalase I enzyme, OsGLYIâ€8, functions in the detoxification of methylglyoxal in the nucleus. Plant Journal, 2017, 89, 565-576.	2.8	36
87	Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Functional and Integrative Genomics, 2017, 17, 69-83.	1.4	31
88	Biomass production and salinity response in plants: role of MicroRNAs. Indian Journal of Plant Physiology, 2017, 22, 448-457.	0.8	8
89	Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Frontiers in Plant Science, 2017, 8, 172.	1.7	574
90	Abiotic Stresses Cause Differential Regulation of Alternative Splice Forms of GATA Transcription Factor in Rice. Frontiers in Plant Science, 2017, 8, 1944.	1.7	86

#	Article	IF	CITATIONS
91	A Salt Overly Sensitive Pathway Member from Brassica juncea BjSOS3 Can Functionally Complement ΔAtsos3 in Arabidopsis. Current Genomics, 2017, 19, 60-69.	0.7	17
92	OsCBSCBSPB4 is a Two Cystathionine-β-Synthase Domain-containing Protein from Rice that Functions in Abiotic Stress Tolerance. Current Genomics, 2017, 19, 50-59.	0.7	11
93	Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. International Journal of Molecular Sciences, 2017, 18, 250.	1.8	25
94	Role of Cysteine Residues in Regulation of Peptidyl-prolyl cis-trans Isomerase Activity of Wheat Cyclophilin TaCYPA-1. Protein and Peptide Letters, 2017, 24, 551-560.	0.4	8
95	TUNEL Assay to Assess Extent of DNA Fragmentation and Programmed Cell Death in Root Cells under Various Stress Conditions. Bio-protocol, 2017, 7, e2502.	0.2	5
96	Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Current Genomics, 2016, 17, 343-357.	0.7	66
97	Signaling cross talk between biotic and abiotic stress responses in soybean. , 2016, , 27-52.		6
98	Analyses of Old "Prokaryotic―Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa. Frontiers in Plant Science, 2016, 7, 304.	1.7	1
99	MATH-Domain Family Shows Response toward Abiotic Stress in Arabidopsis and Rice. Frontiers in Plant Science, 2016, 7, 923.	1.7	33
100	Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Frontiers in Plant Science, 2016, 7, 1029.	1.7	611
101	Halophytes As Bioenergy Crops. Frontiers in Plant Science, 2016, 7, 1372.	1.7	68
102	Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian Journal of Plant Physiology, 2016, 21, 545-555.	0.8	16
103	Editorial: Challenges and Strategies in Plant Biology Research. Indian Journal of Plant Physiology, 2016, 21, 375-376.	0.8	1
104	Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Scientific Reports, 2016, 6, 18358.	1.6	100
105	Glyoxalase Pathway and Drought Stress Tolerance in Plants. , 2016, , 379-399.		4
106	Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnology for Biofuels, 2016, 9, 136.	6.2	53
107	Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Scientific Reports, 2016, 6, 34762.	1.6	35
108	A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation. Plant Physiology, 2016, 171, 2854-2868.	2.3	44

ASHWANI PAREEK

#	Article	IF	CITATIONS
109	The peptidyl-prolyl cis-trans isomerase activity of the wheat cyclophilin, TaCypA-1, is essential for inducing thermotolerance in Escherichia coli. Biochimie Open, 2016, 2, 9-15.	3.2	16
110	Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Reports, 2016, 35, 27-41.	2.8	72
111	Cyclophilin. , 2016, , 1-10.		Ο
112	Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice, 2015, 8, 54.	1.7	41
113	A Method to Utilize Waste Nutrient Sources in Aqueous Extracts for Enhancement of Biomass and Lipid Content in Potential Green Algal Species for Biodiesel Production. Journal of Bioprocessing & Biotechniques, 2015, 5, .	0.2	1
114	Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Frontiers in Environmental Science, 2015, 2, .	1.5	71
115	De Novo Assembly and Characterization of Stress Transcriptome in a Salinity-Tolerant Variety CS52 of Brassica juncea. PLoS ONE, 2015, 10, e0126783.	1.1	45
116	Characterization of Peptidyl-Prolyl Cis-Trans Isomerase- and Calmodulin-Binding Activity of a Cytosolic Arabidopsis thaliana Cyclophilin AtCyp19-3. PLoS ONE, 2015, 10, e0136692.	1.1	28
117	Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 2015, 6, 682.	1.7	68
118	Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Frontiers in Plant Science, 2015, 6, 688.	1.7	70
119	Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. Frontiers in Plant Science, 2015, 6, 711.	1.7	42
120	Understanding salinity responses and adopting â€~omics-based' approaches to generate salinity tolerant cultivars of rice. Frontiers in Plant Science, 2015, 6, 712.	1.7	86
121	Influence of Environmental Factors on Crops. Rice Research Open Access, 2015, 03, .	0.4	0
122	Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC Plant Biology, 2015, 15, 42.	1.6	44
123	Towards Understanding Abiotic Stress Signaling in Plants: Convergence of Genomic, Transcriptomic, Proteomic, and Metabolomic Approaches. , 2015, , 3-40.		13
124	Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2). Molecular Biology Reports, 2015, 42, 1139-1148.	1.0	22
125	Simple and efficient way to detect small polymorphic bands in plants. Genomics Data, 2015, 5, 218-222.	1.3	14
126	Designing Climate-Smart Future Crops Employing Signal Transduction Components. , 2015, , 393-413.		13

8

#	Article	IF	CITATIONS
127	Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Functional and Integrative Genomics, 2015, 15, 395-412.	1.4	41
128	A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 2015, 176, 36-46.	1.6	70
129	Exploiting Microalgae and Macroalgae for Production of Biofuels and Biosequestration of Carbon Dioxide—A Review. International Journal of Green Energy, 2015, 12, 1122-1143.	2.1	14
130	UPLC-MS analysis of Chlamydomonas reinhardtii and Scenedesmus obliquus lipid extracts and their possible metabolic roles. Journal of Applied Phycology, 2015, 27, 1149-1159.	1.5	12
131	Putative osmosensor – OsHK3b – a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from <i>Arabidopsis</i> . Journal of Biomolecular Structure and Dynamics, 2014, 32, 1318-1332.	2.0	14
132	What determines a leaf's shape?. EvoDevo, 2014, 5, 47.	1.3	74
133	Glyoxalases and stress tolerance in plants. Biochemical Society Transactions, 2014, 42, 485-490.	1.6	97
134	A glutathione responsive rice glyoxalase <scp>II</scp> , Os <scp>GLYII</scp> â€2, functions in salinity adaptation by maintaining better photosynthesis efficiency and antiâ€oxidant pool. Plant Journal, 2014, 80, 93-105.	2.8	102
135	A unique <scp>N</scp> i ² ⁺ Ââ€dependent and methylglyoxalâ€inducible rice glyoxalaseÂ <scp>I</scp> possesses a single active site and functions in abiotic stress response. Plant Journal, 2014, 78, 951-963.	2.8	113
136	A suite of new genes defining salinity stress tolerance in seedlings of contrasting rice genotypes. Functional and Integrative Genomics, 2013, 13, 351-365.	1.4	71
137	Regulation of Leaf Senescence: Role of Reactive Oxygen Species. Advances in Photosynthesis and Respiration, 2013, , 393-416.	1.0	7
138	Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. Journal of Bioscience and Bioengineering, 2013, 116, 624-627.	1.1	22
139	Structural and biochemical characterization of the cytosolic wheat cyclophilin TaCypA-1. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 555-563.	2.5	18
140	Cyclophilins: Proteins in search of function. Plant Signaling and Behavior, 2013, 8, e22734.	1.2	113
141	Salt Overly Sensitive pathway members are influenced by diurnal rhythm in rice. Plant Signaling and Behavior, 2013, 8, e24738.	1.2	28
142	Histidine kinases in plants. Plant Signaling and Behavior, 2012, 7, 1230-1237.	1.2	87
143	Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Molecular Biology, 2012, 79, 555-568.	2.0	47
144	Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-Pconfers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biology, 2012, 12, 107.	1.6	131

#	Article	IF	CITATIONS
145	Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice, 2012, 5, 37.	1.7	45
146	Overexpression of Rice CBS Domain Containing Protein Improves Salinity, Oxidative, and Heavy Metal Tolerance in Transgenic Tobacco. Molecular Biotechnology, 2012, 52, 205-216.	1.3	90
147	Dissecting Out the Crosstalk Between Salinity and Hormones in Roots of <i>Arabidopsis</i> . OMICS A Journal of Integrative Biology, 2011, 15, 913-924.	1.0	9
148	Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Plant Physiology and Biochemistry, 2011, 49, 996-1004.	2.8	17
149	An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 2011, 7, 49.	1.9	136
150	Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Functional and Integrative Genomics, 2011, 11, 293-305.	1.4	146
151	Developmental changes in storage proteins and peptidyl prolyl cis–trans isomerase activity in grains of different wheat cultivars. Food Chemistry, 2011, 128, 450-457.	4.2	11
152	Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum. Plant Signaling and Behavior, 2011, 6, 393-399.	1.2	16
153	Maintenance of stress related transcripts in tolerant cultivar at a level higher than sensitive one appears to be a conserved salinity response among plants. Plant Signaling and Behavior, 2009, 4, 431-434.	1.2	15
154	Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics, 2009, 10, 200.	1.2	105
155	Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L Functional and Integrative Genomics, 2009, 9, 109-123.	1.4	140
156	Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Functional and Integrative Genomics, 2009, 9, 411-417.	1.4	50
157	Heterologous Expression of a Salinity and Developmentally Regulated Rice Cyclophilin Gene (OsCyp2) in E. coli and S. cerevisiae Confers Tolerance Towards Multiple Abiotic Stresses. Molecular Biotechnology, 2009, 42, 195-204.	1.3	53
158	Abiotic Stress Responses: Complexities in Gene Expression. , 2009, , 177-198.		4
159	Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. Journal of Plant Physiology, 2009, 166, 507-520.	1.6	120
160	Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 2008, 17, 171-180.	1.3	168
161	Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology of Plants, 2008, 14, 39-49.	1.4	81
162	Raising salinity tolerant rice: recent progress and future perspectives. Physiology and Molecular Biology of Plants, 2008, 14, 137-154.	1.4	40

ASHWANI PAREEK

#	Article	IF	CITATIONS
163	Nomenclature for Two-Component Signaling Elements of Rice. Plant Physiology, 2007, 143, 555-557.	2.3	72
164	Analysis of Salt Stress-Related Transcriptome Fingerprints from Diverse Plant Species. , 2007, , 267-287.		3
165	Characterization and functional validation of glyoxalase II from rice. Protein Expression and Purification, 2007, 51, 126-132.	0.6	35
166	Transgenic Tobacco Overexpressing Glyoxalase Pathway Enzymes Grow and Set Viable Seeds in Zinc-Spiked Soils. Plant Physiology, 2006, 140, 613-623.	2.3	237
167	Whole-Genome Analysis of Oryza sativa Reveals Similar Architecture of Two-Component Signaling Machinery with Arabidopsis. Plant Physiology, 2006, 142, 380-397.	2.3	130
168	Molecular Marker Based Coefficient of Parentage Analysis for Establishing Distinctness in Indian Rice (Oryza sativa L) Varieties. Journal of Plant Biochemistry and Biotechnology, 2005, 14, 135-139.	0.9	1
169	Distribution patterns of 104 kDa stress-associated protein in rice. Plant Molecular Biology, 1998, 37, 911-919.	2.0	29
170	Plant Hsp100 family with special reference to rice. Journal of Biosciences, 1998, 23, 337-345.	0.5	14
171	Plant Hsp90 family with special reference to rice. Journal of Biosciences, 1998, 23, 361-367.	0.5	12
172	Evidence for accumulation of a 55 kDa stress-related protein in rice and several other plant genera. Plant Science, 1998, 134, 191-197.	1.7	10
173	Distribution patterns of HSP 90 protein in rice. Plant Science, 1997, 125, 221-230.	1.7	20
174	Yeast HSP104 homologue rice HSP110 is developmentally- and stress-regulated. Plant Science, 1997, 125, 211-219.	1.7	21
175	Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Molecular Biology, 1995, 29, 293-301.	2.0	117