Miguel Quemada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379529/publications.pdf

Version: 2024-02-01

97 papers 4,534 citations

38 h-index 64 g-index

99 all docs 99 docs citations 99 times ranked 4678 citing authors

#	Article	IF	CITATIONS
1	Using cover crops to mitigate and adapt to climate change. A review. Agronomy for Sustainable Development, $2017, 37, 1$.	2.2	317
2	Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 2007, 81, 123-143.	1.7	304
3	Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agriculture, Ecosystems and Environment, 2013, 174, 1-10.	2.5	246
4	Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment, 2017, 238, 5-24.	2.5	193
5	Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agriculture, Ecosystems and Environment, 2006, 112, 313-323.	2.5	158
6	Carbon and Nitrogen Mineralized from Leaves and Stems of Four Cover Crops. Soil Science Society of America Journal, 1995, 59, 471-477.	1.2	147
7	Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate. European Journal of Agronomy, 2011, 34, 133-143.	1.9	130
8	Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems?. Science of the Total Environment, 2014, 466-467, 164-174.	3.9	122
9	The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agriculture, Ecosystems and Environment, 2012, 155, 50-61.	2.5	118
10	Airborne Hyperspectral Images and Ground-Level Optical Sensors As Assessment Tools for Maize Nitrogen Fertilization. Remote Sensing, 2014, 6, 2940-2962.	1.8	114
11	Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. European Journal of Agronomy, 2006, 24, 140-148.	1.9	103
12	Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agricultural Systems, 2020, 177, 102689.	3.2	102
13	The Kill Date as a Management Tool for Cover Cropping Success. PLoS ONE, 2014, 9, e109587.	1.1	100
14	Approaches for increasing nitrogen and water use efficiency simultaneously. Global Food Security, 2016, 9, 29-35.	4.0	97
15	Temperature and moisture effects on C and N mineralization from surface applied clover residue. Plant and Soil, 1997, 189, 127-137.	1.8	89
16	Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystems Engineering, 2017, 160, 124-133.	1.9	80
17	The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Science of the Total Environment, 2019, 660, 913-922.	3.9	76
18	Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma, 2018, 322, 81-88.	2.3	74

#	Article	IF	Citations
19	Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies: application of capacitance probes. Plant and Soil, 2006, 288, 57-69.	1.8	70
20	Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences, 2016, 13, 5245-5257.	1.3	63
21	Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sensing, 2018, 10, 1657.	1.8	62
22	Title is missing!. Molecular Breeding, 1997, 3, 279-290.	1.0	58
23	CERESâ€N Model Predictions of Nitrogen Mineralized from Cover Crop Residues. Soil Science Society of America Journal, 1995, 59, 1059-1065.	1.2	55
24	Cover crops effect on farm benefits and nitrate leaching: Linking economic and environmental analysis. Agricultural Systems, 2013, 121, 23-32.	3.2	55
25	Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions. Remote Sensing, 2016, 8, 660.	1.8	53
26	Nitrogen use efficiency and residual effect of fertilizers with nitrification inhibitors. European Journal of Agronomy, 2016, 80, 1-8.	1.9	52
27	A methodology for measuring drainage and nitrate leaching in unevenly irrigated vegetable crops. Plant and Soil, 2005, 269, 297-308.	1.8	49
28	Nitrogen use efficiency and fertiliser fate in a long-term experiment with winter cover crops. European Journal of Agronomy, 2016, 79, 14-22.	1.9	48
29	Improved crop residue cover estimates obtained by coupling spectral indices for residue and moisture. Remote Sensing of Environment, 2018, 206, 33-44.	4.6	48
30	Arbuscular mycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Applied Soil Ecology, 2016, 102, 10-18.	2.1	47
31	Ground cover and leaf area index relationship in a grass, legume and crucifer crop. Plant, Soil and Environment, 2012, 58, 385-390.	1.0	46
32	Use of a chlorophyll meter to assess nitrogen nutrition index during the growth cycle in winter wheat. Field Crops Research, 2017, 214, 73-82.	2.3	46
33	The importance of the fallow period for N ₂ O and CH ₄ fluxes and nitrate leaching in a Mediterranean irrigated agroecosystem. European Journal of Soil Science, 2010, 61, 710-720.	1.8	45
34	Weed density and diversity in a long-term cover crop experiment background. Crop Protection, 2018, 112, 103-111.	1.0	45
35	The role of cover crops in irrigated systems: Soil salinity and salt leaching. Agriculture, Ecosystems and Environment, 2012, 158, 200-207.	2.5	44
36	Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. Journal of Cleaner Production, 2019, 241, 118307.	4.6	43

#	Article	IF	CITATIONS
37	Predicting crop residue decomposition using moisture adjusted time scales. Nutrient Cycling in Agroecosystems, 2004, 70, 283-291.	1.1	42
38	First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula. Climatic Change, 2007, 81, 343-355.	1.7	42
39	Nitrogen Release from Surfaceâ€Applied Cover Crop Residues: Evaluating the CERESâ€N Submodel. Agronomy Journal, 1997, 89, 723-729.	0.9	41
40	Strategies to Improve Nitrogen Use Efficiency in Winter Cereal Crops under Rainfed Conditions. Agronomy Journal, 2008, 100, 277-284.	0.9	41
41	Multicriteria decision analysis applied to cover crop species and cultivars selection. Field Crops Research, 2015, 175, 106-115.	2.3	40
42	Assessing cover crop management under actual and climate change conditions. Science of the Total Environment, 2018, 621, 1330-1341.	3.9	38
43	Soil water balance: Comparing two simulation models of different levels of complexity with lysimeter observations. Agricultural Water Management, 2014, 139, 53-63.	2.4	37
44	Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. Journal of Plant Ecology, 2015, 8, 380-389.	1.2	37
45	Characteristic moisture curves and maximum water content of two crop residues. Plant and Soil, 2002, 238, 295-299.	1.8	36
46	Laboratory versus Field Calibration of Capacitance Probes. Soil Science Society of America Journal, 2010, 74, 593-601.	1.2	36
47	Comparison of Methods for Modeling Fractional Cover Using Simulated Satellite Hyperspectral Imager Spectra. Remote Sensing, 2019, 11, 2072.	1.8	36
48	Quantitative characterization of five cover crop species. Journal of Agricultural Science, 2015, 153, 1174-1185.	0.6	33
49	Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile. Agricultural Water Management, 2019, 212, 399-406.	2.4	33
50	Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nature Food, 2022, 3, 122-132.	6.2	30
51	Risk of Inadequate Intakes of Vitamins A, B1, B6, C, E, Folate, Iron and Calcium in the Spanish Population Aged 4 to 18. International Journal for Vitamin and Nutrition Research, 2001, 71, 325-331.	0.6	26
52	Soil respiration 1 year after sewage sludge application. Biology and Fertility of Soils, 2001, 33, 344-346.	2.3	26
53	Cover crops reduce soil resistance to penetration by preserving soil surface water content. Geoderma, 2021, 386, 114911.	2.3	26
54	The cover crop termination choice to designing sustainable cropping systems. European Journal of Agronomy, 2020, 114, 126000.	1.9	25

#	Article	IF	CITATIONS
55	Nitrogen dynamics in cropping systems under Mediterranean climate: a systemic analysis. Environmental Research Letters, 2021, 16, 073002.	2.2	25
56	Strategies to Improve Nitrogen Use Efficiency in Winter Cereal Crops under Rainfed Conditions. Agronomy Journal, 2008, 100, 277.	0.9	23
57	Assessing the cover crop effect on soil hydraulic properties by inverse modelling in a 10-year field trial. Agricultural Water Management, 2019, 222, 62-71.	2.4	23
58	Integrated management for sustainable cropping systems: Looking beyond the greenhouse balance at the field scale. Global Change Biology, 2020, 26, 2584-2598.	4.2	23
59	Legacy of eightâ€year cover cropping on mycorrhizae, soil, and plants. Journal of Plant Nutrition and Soil Science, 2018, 181, 818-826.	1.1	21
60	Simultaneous assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors. European Journal of Agronomy, 2021, 127, 126287.	1.9	21
61	Mapping Crop Residue by Combining Landsat and WorldView-3 Satellite Imagery. Remote Sensing, 2019, 11, 1857.	1.8	20
62	Integrating Water, Nitrogen, and Salinity in Sustainable Irrigated Systems: Cover Crops versus Fallow. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, .	0.6	18
63	Residual Effect and N Fertilizer Rate Detection by High-Resolution VNIR-SWIR Hyperspectral Imagery and Solar-Induced Chlorophyll Fluorescence in Wheat. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	18
64	Predicting crop residue decomposition using moisture adjusted time scales. Nutrient Cycling in Agroecosystems, 2005, 70, 283-291.	1.1	16
65	FertiliCalc: A Decision Support System for Fertilizer Management. International Journal of Plant Production, 2020, 14, 299-308.	1.0	16
66	Predicting N Status in Maize with Clip Sensors: Choosing Sensor, Leaf Sampling Point, and Timing. Sensors, 2019, 19, 3881.	2.1	14
67	Residual effect of synthetic nitrogen fertilizers and impact on Soil Nitrifiers. European Journal of Agronomy, 2019, 109, 125917.	1.9	14
68	Interseeding cover crops into maize: Characterization of species performance under Mediterranean conditions. Field Crops Research, 2020, 249, 107762.	2.3	14
69	Sentinel-2 and WorldView-3 atmospheric correction and signal normalization based on ground-truth spectroradiometric measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173, 166-180.	4.9	12
70	High-Resolution Airborne Hyperspectral Imagery for Assessing Yield, Biomass, Grain N Concentration, and N Output in Spring Wheat. Remote Sensing, 2021, 13, 1373.	1.8	12
71	Thermographic Imaging: Assessment of Drought and Heat Tolerance in Spanish Germplasm of Brachypodium Distachyon. Procedia Environmental Sciences, 2013, 19, 262-266.	1.3	11
72	Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands. Remote Sensing, 2022, 14, 565.	1.8	11

#	Article	lF	CITATIONS
73	Improving Simulation of Soil Water Balance Using Lysimeter Observations in a Semiarid Climate. Procedia Environmental Sciences, 2013, 19, 534-542.	1.3	10
74	Simulating improved combinations tillage-rotation under dryland conditions. Spanish Journal of Agricultural Research, 2013, 11, 820.	0.3	10
75	Ammonia Volatilization from Surface or Incorporated Biosolids by the Addition of Dicyandiamide. Journal of Environmental Quality, 1998, 27, 980-983.	1.0	9
76	Recurrence plots for quantifying the vegetation indices dynamics in a semi-arid grassland. Geoderma, 2022, 406, 115488.	2.3	8
77	Evaluation of nitrate leaching in a vulnerable zone: effect of irrigation water and organic manure application. Spanish Journal of Agricultural Research, 2011, 9, 924.	0.3	8
78	Use of thermographic imaging to screen for drought-tolerant genotypes in Brachypodium distachyon. Crop and Pasture Science, 2016, 67, 99.	0.7	6
79	Available Nitrogen for Corn and Winter Cereal in Spanish Soils Measured by Electroâ€ultrafiltration, Calcium Chloride, and Incubation Methods. Communications in Soil Science and Plant Analysis, 2007, 38, 2061-2075.	0.6	5
80	The Vegetation–Climate System Complexity through Recurrence Analysis. Entropy, 2021, 23, 559.	1.1	5
81	Fertilizers. , 2016, , 321-339.		5
82	Effect of digested sewage sludge on the efficiency of N-fertilizer applied to barley. Nutrient Cycling in Agroecosystems, 1997, 48, 241-246.	1.1	4
83	Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile. Agriculture (Switzerland), 2021, 11, 721.	1.4	3
84	Nitrogen Fertilization I: The Nitrogen Balance. , 2016, , 341-368.		3
85	Productivity in agricultural systems under climate change scenarios. Evaluation and adaptation. European Physical Journal Special Topics, 2004, 121, 269-281.	0.2	2
86	Soil Nitrogen Availability after Addition of Thermally Dried Pig Slurry. Soil Science Society of America Journal, 2011, 75, 940-948.	1.2	2
87	Assessing crop residue cover when scene moisture conditions change. , 2015, , .		2
88	Improved Crop Residue Cover Estimates from Satelite Images by Coupling Residue and Water Spectral Indices. , 2018, , .		2
89	Nitrogen Fertilization II: Fertilizer Requirements. , 2016, , 369-380.		2
90	Vegetation indices from remote sensing imagery as proxies for yield and grain N in wheat. , 2019, , .		2

#	Article	IF	CITATIONS
91	Calibration of WAVE in Irrigated Maize: Fallow vs. Cover Crops. Procedia Environmental Sciences, 2013, 19, 785-793.	1.3	1
92	Water Management for Enhancing Crop Nutrient Use Efficiency and Reducing Losses. Advances in Olericulture, 2017, , 247-265.	0.4	1
93	Landsat-8 and Worldview-3 Data for Assessing Crop Residue Cover. , 2018, , .		1
94	Data supporting the cover crops benefits related to soil functionality in a 10-year cropping system. Data in Brief, 2018, 18, 1327-1333.	0.5	1
95	TEACHING CROP FERTILIZER REQUIREMENTS WITH THE NUTRIENT RECOMMENDATION MODEL FERTILICALC. , 2021, , .		0
96	Recurrence techniques for the analysis of vegetation indices and climate anomalies: a study case in semiarid grasslands. , $2021, \ldots$		0
97	TEACHING WATER MANAGEMENT IN CROPPING SYSTEMS BY MEAN OF A DIDACTIC TOOL. INTED Proceedings, 2022, , .	0.0	0