Thomas Ziegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonconsensus motif directed chemical synthesis of glutamineâ€based glycopeptides. Journal of Peptide Science, 2020, 26, e3285.	1.4	0
2	Synthesis of new asparagine-based glycopeptides for future scanning tunneling microscopy investigations. Beilstein Journal of Organic Chemistry, 2020, 16, 888-894.	2.2	5
3	Synthesis of Symmetrical Dodecoâ€6,7â€diuloses. European Journal of Organic Chemistry, 2020, 2020, 4347-4360.	2.4	1
4	3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. Reaction Chemistry and Engineering, 2020, 5, 1300-1310.	3.7	19
5	Unexpected Formation of Oxetanes during the Synthesis of Dodeco-6,7-diuloses. MolBank, 2020, 2020, M1108.	0.5	2
6	Carbohydrate based chiral iodoarene catalysts for enantioselective dearomative spirocyclization. Tetrahedron Letters, 2019, 60, 150954.	1.4	11
7	Helical Selfâ€Assembly of Optically Active Glycoconjugated Phthalocyanine <i>J</i> â€Aggregates. ChemPlusChem, 2019, 84, 1081-1093.	2.8	18
8	Carbohydrate-Based Chiral Iodoarene Catalysts: A Survey through the Development of an Improved Catalyst Design. Molecules, 2019, 24, 3883.	3.8	6
9	Glycoconjugated Phthalocyanines as Photosensitizers for PDT – Overcoming Aggregation in Solution. European Journal of Organic Chemistry, 2019, 2019, 7089-7116.	2.4	14
10	<scp>d</scp> â€Fructose Based Spiroâ€Fused PHOX Ligands: Palladium Complexes and Application in Catalysis. European Journal of Organic Chemistry, 2019, 2019, 3955-3963.	2.4	6
11	An unorthodox hydroxymethylation of MEM-protected glucals. Tetrahedron Letters, 2019, 60, 1441-1442.	1.4	0
12	Synthetic Adventures with 2â€ <i>C</i> â€Branched Carbohydrates: 4â€ <i>C</i> â€Formyl Branched Octoses with Structural Analogy to Bradyrhizose. European Journal of Organic Chemistry, 2019, 2019, 2653-2670.	2.4	6
13	Low-budget 3D-printed equipment for continuous flow reactions. Beilstein Journal of Organic Chemistry, 2019, 15, 558-566.	2.2	40
14	Access to d- and l-Psicose Derivatives via Hydroxy Methylation of Ribono Lactone. MolBank, 2019, 2019, M1096.	0.5	1
15	Npomâ€Protected NONOate Enables Lightâ€Triggered NO/cGMP Signalling in Primary Vascular Smooth Muscle Cells. ChemBioChem, 2018, 19, 1312-1318.	2.6	9
16	Synthesis and Pd-catalyzed coupling of1- <i>C</i> -stannylated glycals. Journal of Carbohydrate Chemistry, 2018, 37, 347-369.	1.1	7
17	D-Fructose-based spiro-fused PHOX ligands: synthesis and application in enantioselective allylic alkylation. Beilstein Journal of Organic Chemistry, 2018, 14, 2082-2089.	2.2	8
18	Carbohydrateâ€Derived 3,2â€Enolones in the Baseâ€Catalyzed Rearrangement to Highly Functionalized <i>C</i> 4â€Quaternary 4â€Hydroxyâ€2â€cyclopentenones. European Journal of Organic Chemistry, 2017, 2017, 4490-4499.	2.4	1

THOMAS ZIEGLER

#	Article	IF	CITATIONS
19	Synthesis and NMR studies of malonyl-linked glycoconjugates of <i>N</i> -(2-aminoethyl)glycine. Building blocks for the construction of combinatorial glycopeptide libraries. Beilstein Journal of Organic Chemistry, 2016, 12, 1939-1948.	2.2	3
20	Spiro-fused carbohydrate oxazoline ligands: Synthesis and application as enantio-discrimination agents in asymmetric allylic alkylation. Beilstein Journal of Organic Chemistry, 2016, 12, 166-171.	2.2	19
21	Sugar-Annulated Oxazoline Ligands: A Novel Pd(II) Complex and Its Application in Allylic Substitution. Molecules, 2016, 21, 1704.	3.8	13
22	2-C-Alkynyl and 2-C-cis-Alkenyl β-Mannosides with Acetal Protected γ-Aldehyde Functionality via 2-Uloside Alkynylation and Lindlar Hydrogenation. MolBank, 2016, 2016, M916.	0.5	2
23	1,2â€Annulated Sugars: Synthesis of Polyhydroxylated 2,10â€Dioxadecalins with βâ€ <i>manno</i> Configuration. European Journal of Organic Chemistry, 2016, 2016, 5248-5256.	2.4	14
24	Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines. Molecules, 2015, 20, 18367-18386.	3.8	12
25	Synthesis of Glycoconjugated Phthalonitriles for New Phthalocyanine-Based Photosensitizers. Journal of Carbohydrate Chemistry, 2015, 34, 263-302.	1.1	1
26	Synthesis of spirofused carbohydrate-oxazoline based palladium(II) complexes. Carbohydrate Research, 2015, 411, 56-63.	2.3	9
27	Synthesis of Sugar-Derived Triazole- and Pyridine-Based Metal Complex Ligands. Synthesis, 2015, 47, 199-208.	2.3	15
28	Synthesis of 1,2,3-Triazole-Linked Glycoconjugates of N-(2-Aminoethyl)glycine: Building Blocks for the Construction of Combinatorial Glycopeptide Libraries. Synthesis, 2014, 46, 2362-2370.	2.3	7
29	Synthesis of Vicinal Diketoses by Using a Metathesis–Hydroxylation–Oxidation Sequence. European Journal of Organic Chemistry, 2014, 2014, 7658-7663.	2.4	8
30	Synthesis of aromatic glycoconjugates. Building blocks for the construction of combinatorial glycopeptide libraries. Beilstein Journal of Organic Chemistry, 2014, 10, 2453-2460.	2.2	4
31	Synthesis and characterization of [1,4-bis(α,β-galactopyranos-6-yl)phthalocyaninato]zinc(II). Journal of Porphyrins and Phthalocyanines, 2013, 17, 807-813.	0.8	8
32	1,4,8,11,15,18,22,25-Octafluorophthalocyaninato Zinc (F8PcZn). Synlett, 2012, 23, 2501-2503.	1.8	5
33	Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines. Photochemical and Photobiological Sciences, 2012, 11, 679-686.	2.9	24
34	Synthesis of glycosylated metal phthalocyanines and naphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2012, 16, 434-463.	0.8	15
35	Synthesis and structure of tricarbonyl(î·6-arene)chromium complexes of phenyl and benzyl D-glycopyranosides. Beilstein Journal of Organic Chemistry, 2012, 8, 1059-1070.	2.2	5
36	Aggregation behavior and UV-vis spectra of tetra- and octaglycosylated zinc phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 39-46.	0.8	53

THOMAS ZIEGLER

#	Article	IF	CITATIONS
37	Synthesis of Octaglycosylated Zinc(II) Phthalocyanines. Synthesis, 2010, 2010, 3097-3104.	2.3	3
38	Reaction of N-Nitro-benzotriazole with Nucleophiles. Synthetic Communications, 2010, 40, 3046-3057.	2.1	21
39	Synthesis and characterization of 1,8(11),15(18),22(25)-tetraglycosylated zinc(II) phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2010, 14, 494-498.	0.8	18
40	Synthesis of an octasubstituted galactose zinc(II) phthalocyanine. Tetrahedron Letters, 2009, 50, 873-875.	1.4	47
41	Anomerically glycosylated zinc(II) naphthalocyanines. Tetrahedron Letters, 2009, 50, 5681-5685.	1.4	22
42	Synthesis of unusual phthalocyanines and naphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2009, 13, 312-321.	0.8	12
43	Reaction of Nâ€Nonaflyl and N yanoâ€Benzotriazoles with Enamines. Synthetic Communications, 2008, 38, 881-888.	2.1	17
44	Preparation of Some Glycosyl Amino Acid Building Blocks via Click Reaction and Construction of a Glycotetrapeptide Library Using Spot Synthesis. Journal of Carbohydrate Chemistry, 2008, 27, 446-463.	1.1	13
45	Synthesis of Both Enantiomers of Conduritol C Tetraacetate and ofmeso-Conduritol D Tetraacetate by Oxidation of Benzoquinone Bis(ethylene acetal). European Journal of Organic Chemistry, 2007, 2007, 768-776.	2.4	11
46	An efficient Mitsunobu protocol for the one-pot synthesis of S-glycosyl amino-acid building blocks and their use in combinatorial spot synthesis of glycopeptide libraries. Nature Protocols, 2006, 1, 1987-1994.	12.0	11
47	The first example of anomeric glycoconjugation to phthalocyanines. Tetrahedron Letters, 2006, 47, 3283-3286.	1.4	64
48	Synthesis of Pentasaccharide Fragments Related to theO-Specific Polysaccharide ofShigella flexneri Serotype 1a. European Journal of Organic Chemistry, 2006, 2006, 2618-2630.	2.4	16
49	New Unsymmetrical Zinc-Phthalocyanine Conjugated with One Azo-Dye Moiety: Synthesis via Opening the Fused Triazole Ring and Spectral Properties. European Journal of Organic Chemistry, 2005, 2005, 4328-4337.	2.4	29
50	A Practical Oneâ€Pot Synthesis of New Sâ€Clycosyl Amino Acid Building Blocks for Combinatorial Neoglycopeptide Synthesis. Journal of Carbohydrate Chemistry, 2005, 24, 773-788.	1.1	14
51	Other Methods for Glycoside Synthesis: Sections 5.3 and 5.4. , 0, , 449-496.		0