
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794984/publications.pdf Version: 2024-02-01

ΙΠΑΝ ΥΑΝΟ

#	Article	IF	CITATIONS
1	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623
2	A Layeredâ€Nanospaceâ€Confinement Strategy for the Synthesis of Twoâ€Dimensional Porous Carbon Nanosheets for Highâ€Rate Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1401761.	10.2	308
3	Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance. Advanced Energy Materials, 2017, 7, 1602880.	10.2	306
4	A superhydrophilic "nanoglue―for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy and Environmental Science, 2017, 10, 1958-1965.	15.6	294
5	Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy, 2017, 34, 472-480.	8.2	258
6	3D Architecture Materials Made of NiCoAl‣DH Nanoplates Coupled with NiCoâ€Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400761.	10.2	251
7	3D Porous Nâ€Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Longâ€Life Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	7.8	231
8	Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors. Advanced Functional Materials, 2015, 25, 2109-2116.	7.8	230
9	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	10.2	216
10	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobaltâ€Layered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	7.8	215
11	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	5.2	193
12	Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale, 2014, 6, 3097-3104.	2.8	176
13	NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon, 2016, 110, 1-7.	5.4	175
14	Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon, 2014, 70, 130-141.	5.4	171
15	Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nature Materials, 2019, 18, 970-976.	13.3	169
16	Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe‣ayered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces, 2016, 3, 1500782.	1.9	165
17	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	3.2	116
18	Hydrothermal Synthesis of Phosphate-Functionalized Carbon Nanotube-Containing Carbon Composites for Supercapacitors with Highly Stable Performance. ACS Applied Materials & Interfaces, 2013, 5, 2104-2110.	4.0	107

#	Article	IF	CITATIONS
19	Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. Journal of Colloid and Interface Science, 2020, 560, 69-76.	5.0	106
20	Porosity-Induced High Selectivity for CO ₂ Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts. ACS Catalysis, 2019, 9, 11579-11588.	5.5	99
21	Operando Revealing Dynamic Reconstruction of NiCo Carbonate Hydroxide for High-Rate Energy Storage. Joule, 2020, 4, 673-687.	11.7	88
22	High‣tackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701288.	5.2	83
23	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725.	1.7	82
24	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 906-912.	1.7	78
25	Calcined MgAl-Layered Double Hydroxide/Graphene Hybrids for Capacitive Deionization. Industrial & Engineering Chemistry Research, 2018, 57, 6417-6425.	1.8	59
26	Electrode roughness dependent electrodeposition of sodium at the nanoscale. Nano Energy, 2020, 72, 104721.	8.2	54
27	Thermodynamically Stable Pickering Emulsion Configured with Carbon-Nanotube-Bridged Nanosheet-Shaped Layered Double Hydroxide for Selective Oxidation of Benzyl Alcohol. ACS Applied Materials & Interfaces, 2015, 7, 12203-12209.	4.0	53
28	Ultrathin 2D nitrogen-doped carbon nanosheets for high performance supercapacitors: insight into the effects of graphene oxides. Nanoscale, 2019, 11, 8588-8596.	2.8	49
29	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	5.2	46
30	Ultrasmall diiron phosphide nanodots anchored on graphene sheets with enhanced electrocatalytic activity for hydrogen production via high-efficiency water splitting. Journal of Materials Chemistry A, 2016, 4, 16028-16035.	5.2	44
31	Templated self-assembly of one-dimensional CsPbX ₃ perovskite nanocrystal superlattices. Nanoscale, 2017, 9, 17688-17693.	2.8	39
32	Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 26235-26242.	4.0	35
33	Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 21842-21848.	5.2	33
34	Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. Journal of Materials Chemistry A, 2017, 5, 10380-10386.	5.2	32
35	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	1.7	32
36	High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences. Journal of Materials Chemistry A, 2017, 5, 20374-20380.	5.2	31

#	Article	IF	CITATIONS
37	Phosphate Species up to 70% Mass Ratio for Enhanced Pseudocapacitive Properties. Small, 2018, 14, e1803811.	5.2	29
38	Boosting Supercapacitor Performance of Graphene by Coupling with Nitrogenâ€Doped Hollow Carbon Frameworks. Chemistry - A European Journal, 2020, 26, 2897-2903.	1.7	26
39	Facile Fabrication of Bicomponent CoO/CoFe ₂ O ₄ â€Nâ€Doped Graphene Hybrids with Ultrahigh Lithium Storage Capacity. Particle and Particle Systems Characterization, 2015, 32, 91-97.	1.2	25
40	A facile fabrication of 1D/2D nanohybrids composed of NiCo-hydroxide nanowires and reduced graphene oxide for high-performance asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 204-211.	3.0	23
41	Operando leaching of pre-incorporated Al and mechanism in transition-metal hybrids on carbon substrates for enhanced charge storage. Matter, 2021, 4, 2902-2918.	5.0	22
42	Microporous MOFs Engaged in the Formation of Nitrogenâ€Doped Mesoporous Carbon Nanosheets for Highâ€Rate Supercapacitors. Chemistry - A European Journal, 2018, 24, 2681-2686.	1.7	21
43	Dual Hybrid Effect Endowing Nickel–Cobalt Sulfides with Enhanced Cycling Stability for Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2020, 3, 6977-6984.	2.5	21
44	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	7.3	20
45	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	7.8	18
46	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	5.8	16
47	Mechanochemical coordination self-assembly for Cobalt-based metal-organic framework-derived bifunctional oxygen electrocatalysts. Journal of Colloid and Interface Science, 2022, 613, 733-746.	5.0	14
48	Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal–organic frameworks for lithium-ion batteries. Nanotechnology, 2020, 31, 145402.	1.3	12
49	Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 13623-13630.	1.8	12
50	Preparation of Single-Walled Carbon Nanotubes from Fullerene Waste Soot. ACS Sustainable Chemistry and Engineering, 2014, 2, 14-18.	3.2	10
51	Facile synthesis of 2D nitrogen-containing porous carbon nanosheets induced by graphene oxide for high-performance supercapacitors. Sustainable Energy and Fuels, 2018, 2, 2494-2501.	2.5	6
52	Multilevel Coupled Hybrids Made of Porous Cobalt Oxides and Graphene for Highâ€Performance Lithium Storage. Chemistry - A European Journal, 2019, 25, 5527-5533.	1.7	6
53	Multilayer-Dense Porous Carbon Nanosheets with High Volumetric Capacitance for Supercapacitors. Industrial & Engineering Chemistry Research, 2022, 61, 8908-8917.	1.8	6
54	Silicaâ€Assisted Fabrication of Nâ€doped Porous Carbon for Efficient Electrocatalytic Nitrogen Fixation. ChemCatChem, 2020, 12, 3453-3458.	1.8	5

#	Article	IF	CITATIONS
55	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 850-850.	1.7	4
56	Electrocatalysts: Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene (Adv. Mater. Interfaces 7/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	3
57	A Dual Component Catalytic System Composed of Nonâ€Noble Metal Oxides for Li–O ₂ Batteries with Enhanced Cyclability. Particle and Particle Systems Characterization, 2016, 33, 228-234.	1.2	3
58	Supercapacitors: 3D Architecture Materials Made of NiCoAl-LDH Nanoplates Coupled with NiCo-Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors (Adv. Energy Mater. 18/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	2
59	Monolithic Electrodes: Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors (Adv. Funct. Mater. 14/2015). Advanced Functional Materials, 2015, 25, 2203-2203.	7.8	2
60	Sodiumâ€Ion Batteries: Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	10.2	2
61	Supercapacitors: Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors (Small 37/2017). Small, 2017, 13, .	5.2	1
62	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 681-681.	1.7	0
63	<i>Operando</i> Leaching of Pre-Incorporated Al and Mechanism in Transition Metal Hybrids for Elaborately Enhanced Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0