
## Ki Jun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794941/publications.pdf Version: 2024-02-01



KI LUN YU

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Epidermal Electronics. Science, 2011, 333, 838-843.                                                                                                                                                                                                  | 12.6 | 3,944     |
| 2  | A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.                                                                                                                                                                   | 12.6 | 1,085     |
| 3  | Ultrathin conformal devices for precise and continuous thermal characterization of humanÂskin.<br>Nature Materials, 2013, 12, 938-944.                                                                                                               | 27.5 | 1,002     |
| 4  | Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity fromÂthe<br>cerebral cortex. Nature Materials, 2016, 15, 782-791.                                                                                      | 27.5 | 400       |
| 5  | Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.                                                                                                                                  | 12.8 | 392       |
| 6  | Self-assembled three dimensional network designs for soft electronics. Nature Communications, 2017,<br>8, 15894.                                                                                                                                     | 12.8 | 325       |
| 7  | Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nature Biomedical Engineering, 2019, 3, 194-205.                                                                                          | 22.5 | 253       |
| 8  | Soft Materials in Neuroengineering for Hard Problems in Neuroscience. Neuron, 2015, 86, 175-186.                                                                                                                                                     | 8.1  | 251       |
| 9  | Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics<br>Applications. Nanomaterials, 2019, 9, 374.                                                                                                        | 4.1  | 238       |
| 10 | Materials and Fabrication Processes for Transient and Bioresorbable Highâ€Performance Electronics.<br>Advanced Functional Materials, 2013, 23, 4087-4093.                                                                                            | 14.9 | 222       |
| 11 | Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nature Biomedical Engineering, 2017, 1, .                                                                                           | 22.5 | 210       |
| 12 | Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomedical Engineering, 2019, 3, 37-46.                                                           | 22.5 | 185       |
| 13 | Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for<br>biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the<br>United States of America, 2016, 113, 11682-11687.  | 7.1  | 175       |
| 14 | Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .                                                                                             | 12.4 | 145       |
| 15 | Inorganic semiconducting materials for flexible and stretchable electronics. Npj Flexible Electronics, 2017, 1, .                                                                                                                                    | 10.7 | 144       |
| 16 | Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29,<br>1604989.                                                                                                                                        | 21.0 | 141       |
| 17 | Soft, thin skin-mounted power management systems and their use in wireless thermography.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6136.                                                   | 7.1  | 139       |
| 18 | Three-dimensional mesostructures as high-temperature growth templates, electronic cellular<br>scaffolds, and self-propelled microrobots. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, E9455-E9464. | 7.1  | 129       |

Кі Јим Үи

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes. ACS Nano, 2016, 10, 4920-4925.                                                                                        | 14.6 | 115       |
| 20 | Biodegradable Monocrystalline Silicon Photovoltaic Microcells as Power Supplies for Transient<br>Biomedical Implants. Advanced Energy Materials, 2018, 8, 1703035.                                              | 19.5 | 98        |
| 21 | Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Science Advances, 2020, 6, eaay1729.                                   | 10.3 | 98        |
| 22 | Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.                             | 14.6 | 82        |
| 23 | Ultrahigh Sensitive Auâ€Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous<br>Skin Temperature Monitoring with High Precision. Advanced Materials, 2022, 34, e2105865.                      | 21.0 | 69        |
| 24 | Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15398-15406.   | 7.1  | 66        |
| 25 | Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy and Environmental Science, 2010, 3, 208.                                                      | 30.8 | 65        |
| 26 | Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells. Advanced Energy Materials, 2013, 3,<br>1401-1406.                                                                                              | 19.5 | 61        |
| 27 | Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for<br>Implantable Flexible Electronic Systems. Advanced Electronic Materials, 2017, 3, 1700077.                      | 5.1  | 61        |
| 28 | Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nature<br>Communications, 2020, 11, 4195.                                                                              | 12.8 | 60        |
| 29 | Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible<br>Bioelectronic Systems. ACS Nano, 2018, 12, 10317-10326.                                                   | 14.6 | 57        |
| 30 | Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene.<br>Materials, 2018, 11, 1163.                                                                                        | 2.9  | 54        |
| 31 | Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. Advanced Materials, 2021, 33, e2005786.                        | 21.0 | 51        |
| 32 | Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E9542-E9549.   | 7.1  | 50        |
| 33 | Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Advanced<br>Functional Materials, 2018, 28, 1702284.                                                               | 14.9 | 49        |
| 34 | Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as<br>Biofluid Barriers in Flexible Electronic Systems. ACS Applied Materials & Interfaces, 2017, 9,<br>42633-42638. | 8.0  | 45        |
| 35 | Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems.<br>Micromachines, 2018, 9, 263.                                                                                           | 2.9  | 38        |
| 36 | Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Research, 2021, 14, 3096-3111.                          | 10.4 | 37        |

Ki Jun Yu

| #  | Article                                                                                                                                                                                                        | IF                | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 37 | Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers. Applied Physics Letters, 2013, 102, .                                                    | 3.3               | 34            |
| 38 | On-Demand Drug Release from Gold Nanoturf for a Thermo- and Chemotherapeutic Esophageal Stent.<br>ACS Nano, 2018, 12, 6756-6766.                                                                               | 14.6              | 34            |
| 39 | Ultraâ€Low Cost, Facile Fabrication of Transparent Neural Electrode Array for Electrocorticography<br>with Photoelectric Artifactâ€Free Optogenetics. Advanced Functional Materials, 2022, 32, .               | 14.9              | 34            |
| 40 | Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imageryâ€Based Brain–Machine<br>Interfaces. Advanced Science, 2021, 8, e2101129.                                                          | 11.2              | 31            |
| 41 | Ultra-Lightweight, Flexible InGaP/GaAs Tandem Solar Cells with a Dual-Function Encapsulation Layer.<br>ACS Applied Materials & Interfaces, 2021, 13, 13248-13253.                                              | 8.0               | 25            |
| 42 | Transparent neural implantable devices: a comprehensive review of challenges and progress. Npj<br>Flexible Electronics, 2022, 6, .                                                                             | 10.7              | 25            |
| 43 | Ultrathin, High Capacitance Capping Layers for Silicon Electronics with Conductive Interconnects in Flexible, Longâ€Lived Bioimplants. Advanced Materials Technologies, 2020, 5, 1900800.                      | 5.8               | 17            |
| 44 | VR-enabled portable brain-computer interfaces via wireless soft bioelectronics. Biosensors and<br>Bioelectronics, 2022, 210, 114333.                                                                           | 10.1              | 14            |
| 45 | Flexible InGaP/GaAs Tandem Solar Cells Encapsulated with Ultrathin Thermally Grown Silicon Dioxide as a Permanent Water Barrier and an Antireflection Coating. ACS Applied Energy Materials, 2022, 5, 227-233. | 5.1               | 6             |
| 46 | Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq0 0 0                                                                                                | rgBT /Ove<br>21.0 | rlock 10 Tf 5 |

| 47 | Light Trapping: Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells (Adv. Energy Mater.) Tj ETQq1                                                                         | 1 0.784314 rg | gBT <sub>4</sub> /Overloc |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|
| 48 | Flexible GaAs Photodetectors with Ultrathin Thermally Grown Silicon Dioxide as a Long‣ived Barrier<br>for Chronic Biomedical Implants. Advanced Photonics Research, 2021, 2, 2000051. | 3.6           | 4                         |
| 40 | Elevible Water-proof Rio-Integrated Electronics 2019                                                                                                                                  |               | 0                         |