Pingyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794779/publications.pdf

Version: 2024-02-01

		136740	138251
58	4,348	32	58
papers	citations	h-index	g-index
6.7		6.1	5164
61	61	61	5164
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 1000-1007.	15.6	392
2	Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosomeâ€Localized Photosensitizers for Twoâ€Photon Photodynamic Therapy. Angewandte Chemie - International Edition, 2015, 54, 14049-14052.	7.2	368
3	Advances in the design of organometallic anticancer complexes. Journal of Organometallic Chemistry, 2017, 839, 5-14.	0.8	298
4	Targeted photoredox catalysis in cancer cells. Nature Chemistry, 2019, 11, 1041-1048.	6.6	293
5	New Designs for Phototherapeutic Transition Metal Complexes. Angewandte Chemie - International Edition, 2020, 59, 61-73.	7.2	257
6	Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials, 2015, 56, 140-153.	5.7	227
7	Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium(II) Complex. Journal of Medicinal Chemistry, 2014, 57, 8971-8983.	2.9	207
8	Redoxâ€Active Metal Complexes for Anticancer Therapy. European Journal of Inorganic Chemistry, 2017, 2017, 1541-1548.	1.0	182
9	Noncovalent Ruthenium(II) Complexes–Single-Walled Carbon Nanotube Composites for Bimodal Photothermal and Photodynamic Therapy with Near-Infrared Irradiation. ACS Applied Materials & Interfaces, 2015, 7, 23278-23290.	4.0	140
10	Nucleusâ€Targeted Organoiridium–Albumin Conjugate for Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 2350-2354.	7.2	134
11	A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and inÂvivo. Biomaterials, 2015, 53, 285-295.	5.7	117
12	Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angewandte Chemie - International Edition, 2017, 56, 14898-14902.	7.2	101
13	Combatting AMR: photoactivatable ruthenium(<scp>ii</scp>)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chemical Science, 2017, 8, 395-404.	3.7	99
14	Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9474-9479.	7.2	89
15	A Dinuclear Ruthenium(II) Complex as a One―and Twoâ€Photon Luminescent Probe for Biological Cu ²⁺ Detection. Chemistry - A European Journal, 2013, 19, 15494-15503.	1.7	78
16	A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy. Nature Communications, 2021, 12, 5001.	5.8	78
17	Ruthenium(II) anthraquinone complexes as two-photon luminescent probes for cycling hypoxia imaging inÂvivo. Biomaterials, 2015, 53, 522-531.	5.7	76
18	Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Transactions, 2018, 47, 14841-14854.	1.6	74

#	Article	IF	CITATIONS
19	Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes. Biomaterials, 2016, 83, 321-331.	5.7	66
20	Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes: A way towards cancer therapy?. Biomaterials, 2015, 63, 102-114.	5.7	56
21	Synthesis, characterization and biological evaluation of mixed-ligand ruthenium(<scp>ii</scp>) complexes for photodynamic therapy. Dalton Transactions, 2015, 44, 17335-17345.	1.6	53
22	New Designs for Phototherapeutic Transition Metal Complexes. Angewandte Chemie, 2020, 132, 61-73.	1.6	53
23	An osmium-peroxo complex for photoactive therapy of hypoxic tumors. Nature Communications, 2022, 13, 2245.	5.8	53
24	A NIR phosphorescent osmium(<scp>ii</scp>) complex as a lysosome tracking reagent and photodynamic therapeutic agent. Chemical Communications, 2017, 53, 12341-12344.	2.2	52
25	Recent advances in endoplasmic reticulum targeting metal complexes. Coordination Chemistry Reviews, 2020, 408, 213178.	9.5	50
26	Mitochondria-targeted spin-labelled luminescent iridium anticancer complexes. Chemical Science, 2017, 8, 8271-8278.	3.7	46
27	Chirality in metal-based anticancer agents. Dalton Transactions, 2018, 47, 4017-4026.	1.6	43
28	Synthesis, characterization and biological evaluation of labile intercalative ruthenium(<scp>ii</scp>) complexes for anticancer drug screening. Dalton Transactions, 2016, 45, 13135-13145.	1.6	42
29	Water-Soluble Iridic–Porphyrin Complex for Non-invasive Sonodynamic and Sono-oxidation Therapy of Deep Tumors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27934-27944.	4.0	39
30	Chiral ruthenium(ii) complexes with phenolic hydroxyl groups as dual poisons of topoisomerases I and IIα. Dalton Transactions, 2013, 42, 8907.	1.6	38
31	RuNH2@AuNPs as two-photon luminescent probes for thiols in living cells and tissues. Biomaterials, 2014, 35, 9003-9011.	5.7	37
32	Construction of tetrahedral CoO ₄ vacancies for activating the high oxygen evolution activity of Co _{3â^x} O _{4â^Î_{porous nanosheet arrays. Nanoscale, 2020, 12, 11079-11087.}}	2.8	35
33	Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes. Scientific Reports, 2016, 6, 20887.	1.6	31
34	A viscosity-sensitive iridium(<scp>iii</scp>) probe for lysosomal microviscosity quantification and blood viscosity detection in diabetic mice. Dalton Transactions, 2019, 48, 3990-3997.	1.6	25
35	A dendritic nano-sized hexanuclear ruthenium(II) complex as a one- and two-photon luminescent tracking non-viral gene vector. Scientific Reports, 2015, 5, 10707.	1.6	24
36	Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angewandte Chemie, 2021, 133, 9560-9565.	1.6	24

#	Article	IF	Citations
37	"Turn off-on―phosphorescent sensor for biothiols based on a Ru-Cu ensemble. Sensors and Actuators B: Chemical, 2018, 255, 283-289.	4.0	22
38	Design of ruthenium-albumin hydrogel for cancer therapeutics and luminescent imaging. Journal of Inorganic Biochemistry, 2019, 194, 19-25.	1.5	22
39	An ultrasound activated cyanine-rhenium(<scp>i</scp>) complex for sonodynamic and gas synergistic therapy. Chemical Communications, 2022, 58, 3314-3317.	2.2	22
40	Nucleusâ€ŧargeted organoiridiumâ€albumin conjugate for photoactivated cancer therapy. Angewandte Chemie, 2018, 131, 2372.	1.6	20
41	Near-Infrared Luminescent Osmium(II) Complexes with an Intrinsic RNA-Targeting Capability for Nucleolus Imaging in Living Cells. ACS Applied Bio Materials, 2018, 1, 1587-1593.	2.3	18
42	Enhancing the photothermal stability and photothermal efficacy of AuNRs and AuNTs by grafting with Ru(<scp>ii</scp>) complexes. Journal of Materials Chemistry B, 2017, 5, 671-678.	2.9	17
43	Isomeric Ir(<scp>iii</scp>) complexes for tracking mitochondrial pH fluctuations and inducing mitochondrial dysfunction during photodynamic therapy. Dalton Transactions, 2019, 48, 17200-17209.	1.6	16
44	Sulfurâ€Coordinated Organoiridium(III) Complexes Exert Breast Anticancer Activity via Inhibition of Wnt∫l²â€Catenin Signaling. Angewandte Chemie - International Edition, 2021, 60, 4841-4848.	7.2	16
45	Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. Chinese Chemical Letters, 2022, 33, 1907-1912.	4.8	16
46	Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angewandte Chemie, 2017, 129, 15094-15098.	1.6	15
47	A novel iridium(<scp>iii</scp>) complex for sensitive HSA phosphorescence staining in proteome research. Chemical Communications, 2018, 54, 3282-3285.	2.2	14
48	Near-infrared phosphorescent terpyridine osmium(<scp>ii</scp>) photosensitizer complexes for photodynamic and photooxidation therapy. Inorganic Chemistry Frontiers, 2020, 7, 4020-4027.	3.0	13
49	A phosphorescent iridium probe for sensing polarity in the endoplasmic reticulum and <i>in vivo</i> Dalton Transactions, 2019, 48, 7728-7734.	1.6	11
50	Highly Efficient Ir(III)â€Coumarin Photoâ€Redox Catalyst for Synergetic Multiâ€Mode Cancer Photoâ€Therapy. Chemistry - A European Journal, 2022, 28, .	1.7	11
51	Microenvironment-sensitive iridium(<scp>iii</scp>) complexes for disease theranostics. Dalton Transactions, 2020, 49, 9182-9190.	1.6	9
52	Diatom-like silica–protein nanocomposites for sustained drug delivery of ruthenium polypyridyl complexes. Journal of Inorganic Biochemistry, 2021, 221, 111489.	1.5	9
53	Sono-ReCORMs for synergetic sonodynamic-gas therapy of hypoxic tumor. Chinese Chemical Letters, 2023, 34, 107653.	4.8	7
54	Synthesis, characterisation and dynamic behavior of photoactive bipyridyl ruthenium(II)-nicotinamide complexes. Inorganica Chimica Acta, 2017, 454, 240-246.	1.2	6

#	Article	IF	CITATION
55	Sulfurâ€Coordinated Organoiridium(III) Complexes Exert Breast Anticancer Activity via Inhibition of Wnt/βâ€Catenin Signaling. Angewandte Chemie, 2021, 133, 4891-4898.	1.6	5
56	A HCBP1 peptide conjugated ruthenium complex for targeted therapy of hepatoma. Dalton Transactions, 2020, 49, 972-976.	1.6	4
57	Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. Chinese Chemical Letters, 2023, 34, 107666.	4.8	3
58	Innentitelbild: Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells (Angew. Chem. 47/2017). Angewandte Chemie, 2017, 129, 14968-14968.	1.6	0