
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794315/publications.pdf Version: 2024-02-01

FANCLAN

#	Article	IF	CITATIONS
1	Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. International Journal of Nanomedicine, 2012, 7, 3365.	3.3	108
2	Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. ACS Nano, 2017, 11, 3690-3704.	7.3	94
3	Boronic Acid-Functionalized Magnetic Metal–Organic Frameworks via a Dual-Ligand Strategy for Highly Efficient Enrichment of Phosphopeptides and Glycopeptides. ACS Sustainable Chemistry and Engineering, 2019, 7, 6043-6052.	3.2	88
4	lmmuno-modified superparamagnetic nanoparticles <i>via</i> host–guest interactions for high-purity capture and mild release of exosomes. Nanoscale, 2018, 10, 14280-14289.	2.8	80
5	The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. Journal of Nanoparticle Research, 2011, 13, 5135-5145.	0.8	73
6	Multi-affinity sites of magnetic guanidyl-functionalized metal–organic framework nanospheres for efficient enrichment of global phosphopeptides. Nanoscale, 2018, 10, 8391-8396.	2.8	58
7	Glutathione-Functionalized Magnetic Covalent Organic Framework Microspheres with Size Exclusion for Endogenous Glycopeptide Recognition in Human Saliva. ACS Applied Materials & amp; Interfaces, 2019, 11, 47218-47226.	4.0	54
8	Facile synthesis of monodisperse superparamagnetic Fe ₃ O ₄ <i>/</i> PMMA composite nanospheres with high magnetization. Nanotechnology, 2011, 22, 225604.	1.3	51
9	Leukocyteâ€Repelling Biomimetic Immunomagnetic Nanoplatform for Highâ€Performance Circulating Tumor Cells Isolation. Small, 2019, 15, e1900558.	5.2	48
10	Two-staged time-dependent materials for the prevention of implant-related infections. Acta Biomaterialia, 2020, 101, 128-140.	4.1	48
11	pH-Responsive magnetic metal–organic framework nanocomposites for selective capture and release of glycoproteins. Nanoscale, 2017, 9, 527-532.	2.8	47
12	Synthesis of superparamagnetic Fe3O4/PMMA/SiO2 nanorattles with periodic mesoporous shell for lysozyme adsorption. Nanoscale, 2012, 4, 2264.	2.8	41
13	Multifunctional luminescent immuno-magnetic nanoparticles: toward fast, efficient, cell-friendly capture and recovery of circulating tumor cells. Journal of Materials Chemistry B, 2019, 7, 393-400.	2.9	36
14	Synergic effect of magnetic nanoparticles on the electrospun aligned superparamagnetic nanofibers as a potential tissue engineering scaffold. RSC Advances, 2013, 3, 879-886.	1.7	30
15	The essential role of osteoclast-derived exosomes in magnetic nanoparticle-infiltrated hydroxyapatite scaffold modulated osteoblast proliferation in an osteoporosis model. Nanoscale, 2020, 12, 8720-8726.	2.8	29
16	A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors. Nanoscale, 2016, 8, 7544-7555.	2.8	28
17	Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids and Surfaces B: Biointerfaces, 2014, 123, 213-218.	2.5	27
18	Dopamine self-polymerized along with hydroxyapatite onto the preactivated titanium percutaneous implants surface to promote human gingival fibroblast behavior and antimicrobial activity for biological sealing. Journal of Biomaterials Applications, 2018, 32, 1071-1082.	1.2	26

#	Article	IF	CITATIONS
19	pH-Responsive magnetic nanospheres for the reversibly selective capture and release of glycoproteins. Journal of Materials Chemistry B, 2017, 5, 1236-1245.	2.9	25
20	Phytic acid functionalized magnetic bimetallic metal–organic frameworks for phosphopeptide enrichment. Journal of Materials Chemistry B, 2021, 9, 1811-1820.	2.9	25
21	Superparamagnetic Fe ₃ O ₄ /PMMA composite nanospheres as a nanoplatform for multimodal protein separation. RSC Advances, 2013, 3, 1557-1563.	1.7	24
22	Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds <i>in vivo</i> . Nanoscale, 2019, 11, 6817-6827.	2.8	24
23	PAMAM–PMAA brush-functionalized magnetic composite nanospheres: a smart nanoprobe with tunable selectivity for effective enrichment of mono-, multi-, or global phosphopeptides. Journal of Materials Chemistry B, 2020, 8, 1266-1276.	2.9	24
24	Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization. Colloids and Surfaces B: Biointerfaces, 2014, 123, 413-418.	2.5	23
25	PAMA–Arg brush-functionalized magnetic composite nanospheres for highly effective enrichment of phosphorylated biomolecules. Journal of Materials Chemistry B, 2018, 6, 3969-3978.	2.9	23
26	Synthesis of amphipathic superparamagnetic Fe ₃ O ₄ Janus nanoparticles via a moderate strategy and their controllable self-assembly. RSC Advances, 2016, 6, 40450-40458.	1.7	22
27	Ligandâ€Free Fe ₃ O ₄ /CMCS Nanoclusters with Negative Charges for Efficient Structureâ€Selective Protein Adsorption. Small, 2016, 12, 2344-2353.	5.2	21
28	A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption. Nanoscale, 2015, 7, 17617-17622.	2.8	19
29	Multi-targeting magnetic hyaluronan capsules efficiently capturing circulating tumor cells. Journal of Colloid and Interface Science, 2019, 545, 94-103.	5.0	19
30	Surfactant-free synthesis of covalent organic framework nanospheres in water at room temperature. Journal of Colloid and Interface Science, 2022, 606, 1333-1339.	5.0	19
31	Conformational changes of adsorbed and free proteins on magnetic nanoclusters. Colloids and Surfaces B: Biointerfaces, 2018, 170, 664-672.	2.5	18
32	Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides. Analytica Chimica Acta, 2021, 1177, 338761.	2.6	18
33	Hollow superparamagnetic PLGA/Fe ₃ O ₄ composite microspheres for lysozyme adsorption. Nanotechnology, 2014, 25, 085702.	1.3	17
34	Superparamagnetic nanocomposites based on surface imprinting for biomacromolecular recognition. Materials Science and Engineering C, 2017, 70, 1076-1080.	3.8	15
35	Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo. RSC Advances, 2013, 3, 23571.	1.7	14
36	Double-sided coordination assembly: superparamagnetic composite microspheres with layer-by-layer structure for protein separation. RSC Advances, 2014, 4, 1055-1061.	1.7	13

#	Article	IF	CITATIONS
37	Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1145, 122080.	1.2	13
38	In Situ Controllable Fabrication of Two-Dimensional Magnetic Fe ₃ O ₄ /TiO ₂ @Ti ₃ C ₂ T _{<i>x</i>} Composites for Highly Efficient Phosphopeptides Enrichment. ACS Applied Materials & Interfaces, 2021, 13, 54665-54676.	4.0	12
39	Intermolecular B–N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions. Journal of Materials Chemistry B, 2021, 9, 453-463.	2.9	11
40	Construction of a magnetic covalent organic framework with synergistic affinity strategy for enhanced glycopeptide enrichment. Journal of Materials Chemistry B, 2021, 9, 6377-6386.	2.9	11
41	Facile Preparation of a Lithium-Ion Battery Separator with Thermal Shutdown Function Based on Polypropylene/Polyethylene Microsphere Composites. Industrial & Engineering Chemistry Research, 2021, 60, 18530-18539.	1.8	11
42	Graphene oxide and mineralized collagen-functionalized dental implant abutment with effective soft tissue seal and romotely repeatable photodisinfection. International Journal of Energy Production and Management, 2022, 9, rbac024.	1.9	10
43	Complementary multiple hydrogen-bond-based magnetic composite microspheres for high coverage and efficient phosphopeptide enrichment in bio-samples. Journal of Materials Chemistry B, 2020, 8, 8414-8421.	2.9	8
44	Ultrasensitive DNA Methylation Ratio Detection Based on the Target-Induced Nanoparticle-Coupling and Site-Specific Base Oxidation Damage for Colorectal Cancer. Analytical Chemistry, 2022, 94, 6261-6270.	3.2	8
45	Polymer-entanglement-driven coassembly of hybrid superparamagnetic nanoparticles: Tunable structures and flexible functionalization. Journal of Colloid and Interface Science, 2017, 508, 263-273.	5.0	6
46	Magnetic MXene/PAMAM Composites with Flexible Dimensional Regulation for Highly Effective Enrichment of Phosphopeptides. ACS Sustainable Chemistry and Engineering, 2022, 10, 2494-2508.	3.2	5
47	Interaction of Nucleic Acids with Metal–Organic Framework Nanosheets by Fluorescence Spectroscopy and Molecular Dynamics Simulations. ACS Applied Bio Materials, 2022, 5, 3500-3508.	2.3	5
48	Uniform Superparamagnetic Fe ₃ O ₄ /CMCS Composite Nanospheres for Lysozyme Adsorption. Journal of Nanoscience and Nanotechnology, 2016, 16, 2233-2238.	0.9	4
49	Magnetic polymer nanomaterials for sample pretreatment in proteomics. Materials Advances, 2021, 2, 2200-2215.	2.6	4
50	Metal–Organic Framework-Derived Hollow and Hierarchical Porous Multivariate Metal-Oxide Microspheres for Efficient Phosphoproteomics Analysis. ACS Applied Materials & Interfaces, 2021, 13, 34762-34772.	4.0	4
51	pH-responsive superstructures prepared via the assembly of Fe3O4 amphipathic Janus nanoparticles. International Journal of Energy Production and Management, 2018, 5, 251-259.	1.9	3
52	Protein Adsorption: Ligand-Free Fe3O4/CMCS Nanoclusters with Negative Charges for Efficient Structure-Selective Protein Adsorption (Small 17/2016). Small, 2016, 12, 2248-2248.	5.2	2
53	Rapid synthesis of magnetic polyimine nanospheres at room temperature for enrichment of endogenous C-peptide. Colloids and Interface Science Communications, 2021, 42, 100390.	2.0	2
54	Hydrophilic magnetic covalent triazine frameworks for differential N-glycopeptides enrichment in breast cancer plasma membranes. Journal of Materials Chemistry B, 2022, 10, 717-727.	2.9	1

#	Article	IF	CITATIONS
55	Facile Preparation of a Trilayer Separator with a Shutdown Function Based on the Compounding of β-Crystal Polypropylene and Hydrogenated Petroleum Resin. Industrial & Engineering Chemistry Research, 2022, 61, 9015-9024.	1.8	0