
Vincenzo Costanzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intravital Imaging with Two-Photon Microscopy: A Look into the Kidney. Photonics, 2022, 9, 294.	0.9	4
2	Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors. BioEssays, 2021, 43, 2000181.	1.2	1
3	REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Molecular Cell, 2021, 81, 4008-4025.e7.	4.5	78
4	Characterization of five novel vasopressin V2 receptor mutants causing nephrogenic diabetes insipidus reveals a role of tolvaptan for M272R-V2R mutation. Scientific Reports, 2020, 10, 16383.	1.6	14
5	SSRP1-mediated histone H1 eviction promotes replication origin assembly and accelerated development. Nature Communications, 2020, 11, 1345.	5.8	11
6	Physiological Tolerance to ssDNA Enables Strand Uncoupling during DNA Replication. Cell Reports, 2020, 30, 2416-2429.e7.	2.9	45
7	ATR expands embryonic stem cell fate potential in response to replication stress. ELife, 2020, 9, .	2.8	37
8	SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature, 2018, 557, 57-61.	13.7	319
9	Exploring the links between cancer and placenta development. Open Biology, 2018, 8, .	1.5	109
10	The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms. Cell, 2018, 173, 1508-1519.e18.	13.5	124
11	<i>Xenopus</i> egg extract to study regulation of genomeâ€wide and locusâ€specific DNA replication. Genesis, 2017, 55, e22996.	0.8	4
12	Moonlighting at replication forks – a new life for homologous recombination proteins <scp>BRCA</scp> 1, <scp>BRCA</scp> 2 and <scp>RAD</scp> 51. FEBS Letters, 2017, 591, 1083-1100.	1.3	141
13	Chromatin determinants impart camptothecin sensitivity. EMBO Reports, 2017, 18, 1000-1012.	2.0	18
14	Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection. Cell Reports, 2017, 21, 333-340.	2.9	56
15	Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Molecular Cell, 2017, 68, 414-430.e8.	4.5	295
16	Centromere Structure and Function. Progress in Molecular and Subcellular Biology, 2017, 56, 515-539.	0.9	40
17	Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Molecular Cell, 2017, 67, 867-881.e7.	4.5	288
18	Xenopus laevis as Model System to Study DNA Damage Response and Replication Fork Stability. Methods in Enzymology, 2017, 591, 211-232.	0.4	8

VINCENZO COSTANZO

#	Article	IF	CITATIONS
19	<scp>GEMC</scp> 1 is a critical regulator of multiciliated cell differentiation. EMBO Journal, 2016, 35, 942-960.	3.5	91
20	Structure of human Cdc45 and implications for CMG helicase function. Nature Communications, 2016, 7, 11638.	5.8	57
21	Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nature Cell Biology, 2016, 18, 684-691.	4.6	103
22	ATR checkpoint suppression by repetitive DNA. Cell Cycle, 2016, 15, 2993-2994.	1.3	2
23	Replication, checkpoint suppression and structure of centromeric DNA. Nucleus, 2016, 7, 540-546.	0.6	8
24	Studying essential DNA metabolism proteins in Xenopus egg extract. International Journal of Developmental Biology, 2016, 60, 221-227.	0.3	8
25	Mismatch repair-dependent metabolism of O 6 -methylguanine-containing DNA in Xenopus laevis egg extracts. DNA Repair, 2015, 28, 1-7.	1.3	17
26	CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nature Communications, 2015, 6, 7676.	5.8	96
27	Notch is a direct negative regulator of the DNA-damage response. Nature Structural and Molecular Biology, 2015, 22, 417-424.	3.6	68
28	Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle, 2014, 13, 2120-2128.	1.3	15
29	ATM controls proper mitotic spindle structure. Cell Cycle, 2014, 13, 1091-1100.	1.3	29
30	NCOA4 Transcriptional Coactivator Inhibits Activation of DNA Replication Origins. Molecular Cell, 2014, 55, 123-137.	4.5	54
31	DNA replication and homologous recombination factors: acting together to maintain genome stability. Chromosoma, 2013, 122, 401-413.	1.0	37
32	Cep63 and Cep152 Cooperate to Ensure Centriole Duplication. PLoS ONE, 2013, 8, e69986.	1.1	83
33	A Dual Role for UVRAG in Maintaining Chromosomal Stability Independent of Autophagy. Developmental Cell, 2012, 22, 1001-1016.	3.1	90
34	RNase H and Postreplication Repair Protect Cells from Ribonucleotides Incorporated in DNA. Molecular Cell, 2012, 45, 99-110.	4.5	153
35	RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nature Structural and Molecular Biology, 2012, 19, 17-24.	3.6	147
36	Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nature Structural and Molecular Biology, 2012, 19, 417-423.	3.6	408

VINCENZO COSTANZO

#	Article	IF	CITATIONS
37	Mechanisms of replication fork protection: a safeguard for genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 222-235.	2.3	130
38	ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO Journal, 2011, 30, 546-555.	3.5	352
39	Brca2, Rad51 and Mre11: Performing balancing acts on replication forks. DNA Repair, 2011, 10, 1060-1065.	1.3	69
40	Studying DNA Replication Fork Stability in Xenopus Egg Extract. Methods in Molecular Biology, 2011, 745, 437-445.	0.4	20
41	Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nature Structural and Molecular Biology, 2010, 17, 1305-1311.	3.6	453
42	Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Reports, 2010, 11, 270-278.	2.0	43
43	GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nature Cell Biology, 2010, 12, 484-491.	4.6	97
44	GEMC1 is a novel TopBP1-interacting protein involved in chromosomal DNA replication. Cell Cycle, 2010, 9, 3686-3690.	1.3	8
45	An ATM and ATR dependent pathway targeting centrosome dependent spindle assembly. Cell Cycle, 2009, 8, 1997-2001.	1.3	12
46	Studying the DNA damage response using in vitro model systems. DNA Repair, 2009, 8, 1025-1037.	1.3	38
47	Responding to chromosomal breakage during M-phase: insights from a cell-free system. Cell Division, 2009, 4, 15.	1.1	5
48	Tipin/Tim1/And1 protein complex promotes Polα chromatin binding and sister chromatid cohesion. EMBO Journal, 2009, 28, 3681-3692.	3.5	71
49	Dealing with dangerous accidents: DNA doubleâ€strand breaks take centre stage. EMBO Reports, 2009, 10, 837-842.	2.0	4
50	An ATM- and ATR-dependent checkpoint inactivates spindle assembly by targeting CEP63. Nature Cell Biology, 2009, 11, 278-285.	4.6	67
51	Mre11–Rad50–Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO Journal, 2008, 27, 1953-1962.	3.5	110
52	Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO Journal, 2008, 27, 876-885.	3.5	101
53	Polo-like kinase 1 reaches beyond mitosis—cytokinesis, DNA damage response, and development. Current Opinion in Cell Biology, 2008, 20, 650-660.	2.6	153
54	Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14929-14934.	3.3	87

VINCENZO COSTANZO

#	Article	IF	CITATIONS
55	Role for Non-Proteolytic Control of M-phase Promoting Factor Activity at M-phase Exit. PLoS ONE, 2007, 2, e247.	1.1	25
56	ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO Journal, 2006, 25, 1764-1774.	3.5	187
57	Fanconi Anemia Proteins Are Required To Prevent Accumulation of Replication-Associated DNA Double-Strand Breaks. Molecular and Cellular Biology, 2006, 26, 425-437.	1.1	103
58	Xenopus Cell-Free Extracts to Study DNA Damage Checkpoints. , 2004, 241, 255-268.		18
59	Mre11 Assembles Linear DNA Fragments into DNA Damage Signaling Complexes. PLoS Biology, 2004, 2, e110.	2.6	91
60	<i>Xenopus</i> Cell-Free Extracts to Study the DNA Damage Response. , 2004, 280, 213-228.		21
61	ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biology, 2004, 6, 648-655.	4.6	333
62	Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair, 2004, 3, 901-908.	1.3	170
63	Coordinated Chromatin-Association of Fanconi Anemia Network Proteins Requires Replication-Coupled DNA Damage Recognition Blood, 2004, 104, 723-723.	0.6	0
64	An ATR- and Cdc7-Dependent DNA Damage Checkpoint that Inhibits Initiation of DNA Replication. Molecular Cell, 2003, 11, 203-213.	4.5	331
65	Single-Strand DNA Gaps Trigger an ATR- and Cdc7-Dependent Checkpoint. Cell Cycle, 2003, 2, 17-17.	1.3	31
66	Amyloid Â-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13217-13221.	3.3	486
67	Mre11 Protein Complex Prevents Double-Strand Break Accumulation during Chromosomal DNA Replication. Molecular Cell, 2001, 8, 137-147.	4.5	224
68	Role for cyclin-dependent kinase 2 in mitosis exit. Current Biology, 2001, 11, 1221-1226.	1.8	38
69	Reconstitution of an ATM-Dependent Checkpoint that Inhibits Chromosomal DNA Replication following DNA Damage. Molecular Cell, 2000, 6, 649-659.	4.5	164
70	Protein Kinase A is required for chromosomal DNA replication. Current Biology, 1999, 9, 903-S2.	1.8	25