
Michael Sturek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flipped classroom model improves graduate student performance in cardiovascular, respiratory, and renal physiology. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 316-320.	0.8	367
2	Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67.	3.6	176
3	Epicardial Perivascular Adipose-Derived Leptin Exacerbates Coronary Endothelial Dysfunction in Metabolic Syndrome via a Protein Kinase C-β Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1711-1717.	1.1	162
4	Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comparative Medicine, 2006, 56, 35-45.	0.4	148
5	Smooth Muscle Cell Plasticity. Circulation Research, 2013, 112, 17-22.	2.0	146
6	Label-Free Bond-Selective Imaging by Listening to Vibrationally Excited Molecules. Physical Review Letters, 2011, 106, 238106.	2.9	132
7	Perivascular Adipose Tissue Potentiates Contraction of Coronary Vascular Smooth Muscle. Circulation, 2013, 128, 9-18.	1.6	122
8	Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2489-H2496.	1.5	113
9	Functional P2Y 2 Nucleotide Receptors Mediate Uridine 5′-Triphosphate–Induced Intimal Hyperplasia in Collared Rabbit Carotid Arteries. Circulation, 2002, 106, 2720-2726.	1.6	112
10	Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comparative Medicine, 2010, 60, 300-15.	0.4	108
11	Measurement of neuronal Ca2+ transients using simultaneous microfluorimetry and electrophysiology. Pflugers Archiv European Journal of Physiology, 1988, 412, 216-223.	1.3	107
12	High-speed Intravascular Photoacoustic Imaging of Lipid-laden Atherosclerotic Plaque Enabled by a 2-kHz Barium Nitrite Raman Laser. Scientific Reports, 2014, 4, 6889.	1.6	107
13	Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Obesity and Metabolic Syndrome. PLoS ONE, 2013, 8, e56612.	1.1	107
14	Imaging and Quantitative Analysis of Atherosclerotic Lesions by CARS-Based Multimodal Nonlinear Optical Microscopy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1342-1348.	1.1	99
15	18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2190-2200.	3.3	97
16	Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. Journal of Controlled Release, 2014, 176, 76-85.	4.8	94
17	Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. Journal of Applied Physiology, 2009, 106, 1686-1691.	1.2	92
18	Labelâ€Free Quantitative Imaging of Cholesterol in Intact Tissues by Hyperspectral Stimulated Raman Scattering Microscopy. Angewandte Chemie - International Edition, 2013, 52, 13042-13046.	7.2	91

#	Article	IF	CITATIONS
19	Benefits of Exercise Training on Coronary Blood Flow in Coronary Artery Disease Patients. Progress in Cardiovascular Diseases, 2015, 57, 443-453.	1.6	86
20	Exercise training decreases store-operated Ca2+entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovascular Research, 2010, 85, 631-640.	1.8	80
21	High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design. Scientific Reports, 2016, 6, 25236.	1.6	78
22	Impaired function of coronary BK _{Ca} channels in metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1629-H1637.	1.5	77
23	Marvels, Mysteries, and Misconceptions of Vascular Compensation to Peripheral Artery Occlusion. Microcirculation, 2010, 17, 3-20.	1.0	77
24	Bondâ€selective imaging of deep tissue through the optical window between 1600 and 1850 nm. Journal of Biophotonics, 2012, 5, 25-32.	1.1	74
25	Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. Journal of Cardiothoracic Surgery, 2014, 9, 2.	0.4	69
26	Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Scientific Reports, 2017, 7, 1417.	1.6	68
27	Contribution of Adenosine A2A and A2B Receptors to Ischemic Coronary Dilation: Role of KV and KATP Channels. Microcirculation, 2010, 17, 600-607.	1.0	66
28	Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics, 2016, 4, 11-21.	4.4	66
29	Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1100-H1138.	1.5	66
30	Mechanisms of Coronary Dysfunction in Obesity and Insulin Resistance. Microcirculation, 2007, 14, 317-338.	1.0	65
31	Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. Journal of Applied Physiology, 2012, 113, 1128-1140.	1.2	64
32	Multiple effects of ryanodine on intracellular free Ca ²⁺ in smooth muscle cells from bovine and porcine coronary artery: modulation of sarcoplasmic reticulum function. British Journal of Pharmacology, 1992, 105, 903-911.	2.7	60
33	Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries. Journal of Applied Physiology, 2003, 95, 250-264.	1.2	60
34	Cloning, Up-Regulation, and Mitogenic Role of Porcine P2Y2 Receptor in Coronary Artery Smooth Muscle Cells. Molecular Pharmacology, 2004, 66, 1265-1274.	1.0	55
35	Altered Mechanism of Adenosine-Induced Coronary Arteriolar Dilation in Early-Stage Metabolic Syndrome. Experimental Biology and Medicine, 2009, 234, 683-692.	1.1	52
36	Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Scientific Reports, 2018, 8, 2400.	1.6	52

#	Article	IF	CITATIONS
37	Ca2+Regulation and Endothelial Vascular Function. Endothelium: Journal of Endothelial Cell Research, 1994, 1, 223-236.	1.7	48
38	Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow. Journal of Molecular and Cellular Cardiology, 2012, 52, 912-919.	0.9	48
39	Microparticles produced by the hydrogel template method for sustained drug delivery. International Journal of Pharmaceutics, 2014, 461, 258-269.	2.6	48
40	C-reactive protein correlates with macrophage accumulation in coronary arteries of hypercholesterolemic pigs. Journal of Applied Physiology, 2003, 95, 1301-1304.	1.2	46
41	Increased atherosclerosis in diabetic dyslipidemic swine. Journal of Lipid Research, 2002, 43, 1618-1629.	2.0	45
42	Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. Journal of Applied Physiology, 2011, 111, 573-586.	1.2	45
43	Retinal capillary basement membrane thickening in a porcine model of diabetes mellitus. Comparative Medicine, 2002, 52, 523-9.	0.4	44
44	Serum and growth factor requirements for proliferation of human adrenocortical cells in culture: Comparison with bovine adrenocortical cells. In Vitro, 1983, 19, 863-869.	1.2	42
45	Canonical Transient Receptor Potential Channels Expression Is Elevated in a Porcine Model of Metabolic Syndrome. Molecular Endocrinology, 2009, 23, 689-699.	3.7	42
46	Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1538-1551.	3.3	42
47	Hyperglycemia-induced insulin resistance in diabetic dyslipidemic Yucatan swine. Comparative Medicine, 2003, 53, 53-64.	0.4	42
48	High-speed intravascular photoacoustic imaging at 17 μm with a KTP-based OPO. Biomedical Optics Express, 2015, 6, 4557.	1.5	41
49	Cell-Signaling Evidence for Adenosine Stimulation of Coronary Smooth Muscle Proliferation via the A 1 Adenosine Receptor. Circulation Research, 2005, 97, 574-582.	2.0	40
50	Calcium channel Orai1 promotes lymphocyte IL-17 expression and progressive kidney injury. Journal of Clinical Investigation, 2019, 129, 4951-4961.	3.9	40
51	Contribution of BKCa channels to local metabolic coronary vasodilation: effects of metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H966-H973.	1.5	39
52	18F-NaF PET Imaging of Early Coronary ArteryÂCalcification. JACC: Cardiovascular Imaging, 2016, 9, 627-628.	2.3	39
53	Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic yucatan swine. Journal of Applied Physiology, 2006, 101, 752-762.	1.2	38
54	Effect of atorvastatin on intracellular calcium uptake in coronary smooth muscle cells from diabetic pigs fed an atherogenic diet. Atherosclerosis, 2001, 159, 117-124.	0.4	37

#	Article	IF	CITATIONS
55	The inhibition of platelet adhesion and activation on collagen during balloon angioplasty by collagen-binding peptidoglycans. Biomaterials, 2011, 32, 2516-2523.	5.7	37
56	Novel Mitogenic Effect of Adenosine on Coronary Artery Smooth Muscle Cells. Circulation Research, 2005, 96, 982-990.	2.0	36
57	Epicardial Adipose Tissue Removal Potentiates Outward Remodeling and Arrests Coronary Atherogenesis. Annals of Thoracic Surgery, 2017, 103, 1622-1630.	0.7	36
58	Adenosine A1 receptors in neointimal hyperplasia and in-stent stenosis in Ossabaw miniature swine. Coronary Artery Disease, 2008, 19, 27-31.	0.3	34
59	Morbid obesity and metabolic syndrome in Ossabaw miniature swine are associated with increased platelet reactivity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2011, 4, 99.	1.1	34
60	Porcine model of diabetic dyslipidemia: insulin and feed algorithms for mimicking diabetes mellitus in humans. Comparative Medicine, 2003, 53, 42-52.	0.4	34
61	Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic Research in Cardiology, 2017, 112, 54.	2.5	33
62	Effects of diet-induced obesity on metabolic parameters and reproductive function in female Ossabaw minipigs. Comparative Medicine, 2014, 64, 44-9.	0.4	33
63	Enhanced Lâ€type Ca 2+ channel current density in coronary smooth muscle of exerciseâ€trained pigs is compensated to limit myoplasmic free Ca 2+ accumulation. Journal of Physiology, 2000, 528, 435-445.	1.3	32
64	Decorin Mimic Inhibits Vascular Smooth Muscle Proliferation and Migration. PLoS ONE, 2013, 8, e82456.	1.1	32
65	Exercise improves impaired ventricular function and alterations of cardiac myofibrillar proteins in diabetic dyslipidemic pigs. Journal of Applied Physiology, 2005, 98, 461-467.	1.2	28
66	Spectral analysis assisted photoacoustic imaging for lipid composition differentiation. Photoacoustics, 2017, 7, 12-19.	4.4	28
67	Effects of Obesity and Metabolic Syndrome on Steroidogenesis and Folliculogenesis in the Female Ossabaw Mini-Pig. PLoS ONE, 2015, 10, e0128749.	1.1	27
68	Ossabaw Island Miniature Swine. , 2007, , 397-402.		27
69	Increased calcium buffering in coronary smooth muscle cells from diabetic dyslipidemic pigs. Atherosclerosis, 2003, 167, 15-23.	0.4	26
70	Bromoenol Lactone Inhibits Voltage-Gated Ca ²⁺ and Transient Receptor Potential Canonical Channels. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 329-340.	1.3	26
71	Calcium Channel Modulation by Dihydropyridines in Vascular Smooth Muscle. Annals of the New York Academy of Sciences, 1988, 522, 25-31.	1.8	24
72	Effect of Highâ€Calcium Diet on Coronary Artery Disease in Ossabaw Miniature Swine With Metabolic Syndrome. Journal of the American Heart Association, 2015, 4, e001620.	1.6	24

#	Article	IF	CITATIONS
73	Functional Nucleotide Receptor Expression and Sarcoplasmic Reticulum Morphology in Dedifferentiated Porcine Coronary Smooth Muscle Cells. Journal of Vascular Research, 2001, 38, 432-443.	0.6	22
74	Short-term exercise training prevents micro- and macrovascular disease following coronary stenting. Journal of Applied Physiology, 2010, 108, 1766-1774.	1.2	22
75	Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine. PLoS ONE, 2015, 10, e0124173.	1.1	22
76	Adenosine Receptor Regulation of Coronary Blood Flow in Ossabaw Miniature Swine. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 781-787.	1.3	21
77	Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrology Dialysis Transplantation, 2016, 32, gfw274.	0.4	20
78	Sarcoplasmic reticulum Ca ²⁺ uptake is impaired in coronary smooth muscle distal to coronary occlusion. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H223-H231.	1.5	19
79	Effect of Different Obesogenic Diets on Pancreatic Histology in Ossabaw Miniature Swine. Pancreas, 2011, 40, 438-443.	0.5	19
80	Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1048-1055.	0.4	19
81	Swine Disease Models for Optimal Vascular Engineering. Annual Review of Biomedical Engineering, 2020, 22, 25-49.	5.7	19
82	Noninvasive measures of body fat percentage in male Yucatan swine. Comparative Medicine, 2005, 55, 445-51.	0.4	19
83	Remodeling of Coronary Arteries in Diabetic Patients-An Intravascular Ultrasound Study. Echocardiography, 2004, 21, 139-144.	0.3	18
84	Atherosclerosis Imaging with 18F-Sodium Fluoride PET. Diagnostics, 2020, 10, 852.	1.3	18
85	Differences in nitric oxide production in porcine resistance arteries and epicardial conduit coronary arteries. , 1996, 168, 539-548.		17
86	Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle. Diabetes, 2015, 64, 3321-3327.	0.3	17
87	Mechanisms of Altered Contractile Responses to Vasopressin and Endothelin in Canine Coronary Collateral Arteries. Circulation, 1997, 95, 231-239.	1.6	17
88	Gender and genetic differences in bladder smooth muscle PPAR mRNA in a porcine model of the metabolic syndrome. Molecular and Cellular Biochemistry, 2007, 302, 43-49.	1.4	16
89	Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, Göttingen minipigs and Ossabaw minipigs. Veterinary Immunology and Immunopathology, 2013, 151, 325-330.	0.5	16
90	Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. Journal of Translational Medicine, 2018, 16, 58.	1.8	16

#	Article	lF	CITATIONS
91	Diabetic dyslipidemia and exercise alter the plasma lowâ€density lipoproteome in Yucatan pigs. Proteomics, 2009, 9, 2468-2483.	1.3	15
92	Drug-Eluting Stent for Delivery of Signal Pathway-Specific 1,3-Dipropyl-8-cyclopentyl Xanthine. Molecular Pharmaceutics, 2009, 6, 1110-1117.	2.3	15
93	Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound. Journal of Cardiovascular Translational Research, 2019, 12, 211-220.	1.1	15
94	Animal Models for COVID-19: More to the Picture Than ACE2, Rodents, Ferrets, and Non-human Primates. A Case for Porcine Respiratory Coronavirus and the Obese Ossabaw Pig. Frontiers in Microbiology, 2020, 11, 573756.	1.5	15
95	New tools for prevention of restenosis could decrease the 'oculo-stento' reflex. Cardiovascular Research, 2002, 53, 292-293.	1.8	14
96	Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries. Journal of Applied Physiology, 2004, 97, 310-316.	1.2	14
97	Evaluating the Mechanisms of Improved Glucose Homeostasis after Bariatric Surgery in Ossabaw Miniature Swine. Journal of Diabetes Research, 2014, 2014, 1-7.	1.0	14
98	Mechanisms underlying capsaicin effects in canine coronary artery: implications for coronary spasm. Cardiovascular Research, 2014, 103, 607-618.	1.8	14
99	Biphasic alterations in coronary smooth muscle Ca2+ regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome. Atherosclerosis, 2016, 249, 1-9.	0.4	13
100	Effect of metabolic syndrome and aging on Ca2+ dysfunction in coronary smooth muscle and coronary artery disease severity in Ossabaw miniature swine. Experimental Gerontology, 2018, 108, 247-255.	1.2	13
101	Shock Wave Lithotripsy Targeting of the Kidney and Pancreas Does Not Increase the Severity of Metabolic Syndrome in a Porcine Model. Journal of Urology, 2014, 192, 1257-1265.	0.2	10
102	Vascular-associated lymphoid tissue in swine (Sus scrofa). Comparative Medicine, 2008, 58, 168-73.	0.4	10
103	Robust effect of metabolic syndrome on major metabolic pathways in the myocardium. PLoS ONE, 2019, 14, e0225857.	1.1	9
104	Highly sensitive lipid detection and localization in atherosclerotic plaque with a dualâ€frequency intravascular photoacoustic/ultrasound catheter. Translational Biophotonics, 2020, 2, e202000004.	1.4	9
105	The genome of the naturally evolved obesity-prone Ossabaw miniature pig. IScience, 2021, 24, 103081.	1.9	9
106	Effect of Renal Shock Wave Lithotripsy on the Development of Metabolic Syndrome in a Juvenile Swine Model: A Pilot Study. Journal of Urology, 2015, 193, 1409-1416.	0.2	8
107	Pharmacological characterization of a UTP-sensitive P2Y nucleotide receptor in organ cultured coronary arteries. Vascular Pharmacology, 2002, 39, 83-88.	1.0	7
108	Effect of exercise on postprandial lipemia following a higher calorie meal in Yucatan miniature swine. Metabolism: Clinical and Experimental, 2004, 53, 1021-1026.	1.5	7

#	Article	IF	CITATIONS
109	Training-Induced Sarcoplasmic Reticulum Ca2+ Unloading Occurs without Ca2+ Influx. Medicine and Science in Sports and Exercise, 2005, 37, 1119-1125.	0.2	7
110	Platelets from diabetic pigs exhibit hypersensitivity to thrombin. Comparative Medicine, 2008, 58, 481-4.	0.4	7
111	The Effect of Calcium Channel Antagonists on Peripheral Neurones. Annals of the New York Academy of Sciences, 1988, 522, 269-277.	1.8	6
112	Alterations in the oxidative metabolic profile in vascular smooth muscle from hyperlipidemic and diabetic swine. Molecular and Cellular Biochemistry, 2001, 217, 99-106.	1.4	6
113	Enhancing pork flavor and fat quality with swine raised in sylvan systems: Potential niche-market application for the Ossabaw hog. Renewable Agriculture and Food Systems, 2006, 21, 183-191.	0.8	6
114	Effect of Age on Diabetogenicity of Alloxan in Ossabaw Miniature Swine. Comparative Medicine, 2019, 69, 114-122.	0.4	5
115	AMP kinase gene mutation is consistent with a thrifty phenotype (metabolic syndrome) in a population of feral swine. FASEB Journal, 2006, 20, A299.	0.2	5
116	Ossabaw Pig Demonstrates Detrusor Fibrosis and Detrusor Underactivity Associated with Oxidative Stress in Metabolic Syndrome. Comparative Medicine, 2020, 70, 329-334.	0.4	5
117	A Large Animal Survival Model to Evaluate Bariatric Surgery Mechanisms. Surgical Science, 2015, 06, 337-345.	0.1	4
118	Endothelin-Induced Myoplasmic Ca2+ Responses and Tyrosine Phosphorylation in Coronary Smooth Muscle. Journal of Cardiovascular Pharmacology, 2002, 40, 18-27.	0.8	3
119	Repeat cross-sectional data on the progression of the metabolic syndrome in Ossabaw miniature swine. Data in Brief, 2016, 7, 1393-1395.	0.5	3
120	ENDOTOXIN IMPAIRS AGONIST-STIMULATED INTRACELLULAR FREE CALCIUM (Cai) RESPONSES IN FRESHLY DISPERSED AORTIC ENDOTHELIAL CELLS. Shock, 2001, 15, 386-391.	1.0	2
121	Intracellular Ca2+ Dysregulation in Coronary Smooth Muscle Is Similar in Coronary Disease of Humans and Ossabaw Miniature Swine. Journal of Cardiovascular Translational Research, 2021, , 1.	1.1	2
122	Increased cholesterol in metabolic syndrome Ossabaw swine precedes storeâ€operated Ca2+ influx and the development of coronary artery disease. FASEB Journal, 2008, 22, 1152.17.	0.2	2
123	Vascular Muscle Calcium Channel Modulation in Hypertension. Journal of Cardiovascular Pharmacology, 1989, 14, S45-S48.	0.8	2
124	Correction to "Drug-Eluting Stent for Delivery of Signal Pathway-Specific 1,3-Dipropyl-8-cyclopentyl Xanthine― Molecular Pharmaceutics, 2012, 9, 3409-3409.	2.3	1
125	CHARACTERIZING THE OSSABAW MINI-PIG AS AN ANIMAL MODEL FOR POLYCYSTIC OVARY SYNDROME. Biology of Reproduction, 2007, 77, 210-211.	1.2	1
126	Diabetic Dyslipidemia and Exercise alter the Plasma Low Density Lipoproteome. FASEB Journal, 2006, 20, A529.	0.2	1

#	Article	IF	CITATIONS
127	Reduced expression of leukemia inhibitory factor correlates with coronary atherosclerosis in the metabolic syndrome FASEB Journal, 2006, 20, A698.	0.2	1
128	Placenta growth factor expression is regulated by stretch and correlates with microvascular dysfunction and plasma LDL. FASEB Journal, 2006, 20, A716.	0.2	1
129	Expression Level of Canonical Transient Receptor Potential (TRPC) Channels is Increased in the Adrenal Medulla of Ossabaw Miniature Pigs Manifesting the Metabolic Syndrome. FASEB Journal, 2008, 22, 1201.14.	0.2	1
130	Detrusor muscle contractility and compliance are impacted by diet in Ossabaw miniature pigs with metabolic syndrome (MetS). FASEB Journal, 2008, 22, 1164.5.	0.2	1
131	Endocrine parameters and ovarian dynamics in Ossabaw miniature swine with metabolic syndrome suggest a model for polycystic ovary syndrome. FASEB Journal, 2008, 22, .	0.2	1
132	Research advisor's checklist. Physiologist, 2011, 54, 95-9.	0.0	1
133	Rationale and Methods for Assessment of Coronary Flow Prior to Coronary Intervention: Where Are We Headed?. Journal of Interventional Cardiology, 2002, 15, 335-341.	0.5	Ο
134	Urodynamic Characterization of Aged Ossabaw Miniature Pigs Mimics Human Detrusor Underactivity. FASEB Journal, 2021, 35, .	0.2	0
135	Comparison of Early Coronary Artery Calcification with Intravascular Ultrasound and Micro Computed Tomography. FASEB Journal, 2021, 35, .	0.2	Ο
136	Cloning and Characterization of the Porcine P2Y6 Receptor: Evidence for Gi Proteinâ€mediated Signaling in Coronary Smooth Muscle. FASEB Journal, 2006, 20, A252.	0.2	0
137	Coronary artery placenta growth factor expression is reduced by diabetes and hyperlipidemia. FASEB Journal, 2006, 20, A716.	0.2	Ο
138	Occlusive, diffuse coronary artery disease in Ossabaw miniature swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.10.	0.2	0
139	Increased cholesterol is vital to the development of coronary artery disease and type 2 diabetes in Ossabaw swine. FASEB Journal, 2008, 22, 1152.18.	0.2	0
140	Species differences in collaterals arising from femoral artery occlusion: a comparison from mice to men. FASEB Journal, 2008, 22, 1147.4.	0.2	0
141	Impaired contribution of voltageâ€dependent K + channels to ischemic coronary vasodilation in Ossabaw swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.3.	0.2	0
142	Structural changes in skeletal muscles of Ossabaw miniature swine with metabolic syndrome. FASEB Journal, 2008, 22, 882.6.	0.2	0
143	Role of large conductance Ca 2+ â€activated K + (BK Ca) channels in local metabolic coronary vasodilation in Ossabaw swine with metabolic syndrome. FASEB Journal, 2008, 22, 1152.4.	0.2	0
144	Hindlimb collateral growth after superficial femoral artery (SFA) ligation in the Ossabaw pig. FASEB Journal, 2008, 22, 1147.5.	0.2	0

#	Article	IF	CITATIONS
145	Metabolic syndrome abolishes A 2A receptor and K ATP channel involvement in coronary arteriolar dilation to adenosine in Ossabaw swine. FASEB Journal, 2008, 22, 1226.26.	0.2	0
146	Upregulation of Adenosine A1 Receptor in Coronary Atherosclerosis in the Metabolic Syndrome and in the in Vitro Organ Culture Model of Coronary Atherosclerosis. FASEB Journal, 2008, 22, .	0.2	0
147	Adenosine A2a/b receptorâ€mediated vasodilation is antagonized by adenosine A1 receptor in coronary circulation of healthy Ossabaw swine. FASEB Journal, 2009, 23, 1032.9.	0.2	Ο
148	Role of Adenosine A1 Receptors and P2Y2 Receptors and ERK1/2 Activation in Coronary Atherosclerosis and Inâ€stent Stenosis. FASEB Journal, 2009, 23, 593.12.	0.2	0
149	Storeâ€operated Ca2+ influx predicts coronary artery disease and is induced by dyslipidemia in metabolic syndrome and type 2 diabetes. FASEB Journal, 2010, 24, 978.4.	0.2	0
150	Coronary artery microvascular narrowing downstream of stent implantation. FASEB Journal, 2010, 24, 789.6.	0.2	0
151	Inward coronary artery microvessel remodeling in Ossabaw swine with metabolic syndrome. FASEB Journal, 2010, 24, 789.3.	0.2	0
152	Epicardial perivascular adipose tissue exacerbates coronary endothelial dysfunction in metabolic syndrome via leptinâ€induced activation of PKCâ€i². FASEB Journal, 2010, 24, 978.5.	0.2	0
153	Contribution of Adenosine A 2A and A 2B Receptor Subtypes to Coronary Reactive Hyperemia: Role of K V and K ATP Channels. FASEB Journal, 2010, 24, 1034.8.	0.2	0
154	AMP kinase mutation exacerbates electrocardiographic ST segment elevation in Ossabaw miniature swine during myocardial ischemia. FASEB Journal, 2011, 25, 1099.6.	0.2	0
155	Differential Stiffness between Resistance Microvessels and Conduit Arteries in the Coronary Circulation of Ossabaw Swine with Metabolic Syndrome. FASEB Journal, 2012, 26, 1055.8.	0.2	0
156	Surgical excision of coronary epicardial adipose tissue provides evidence for its role in coronary artery disease. FASEB Journal, 2012, 26, 866.19.	0.2	0
157	Dysfunction of coronary smooth muscle Ca 2+ regulation in the progression of metabolic syndrome and coronary artery disease in Ossabaw miniature swine. FASEB Journal, 2012, 26, .	0.2	0
158	Effect of dietary calcium supplementation on storeâ€operated calcium entry in coronary smooth muscle cells from Ossabaw miniature swine with coronary artery disease. FASEB Journal, 2013, 27, 1195.7.	0.2	0
159	An in vitro model of coronary artery disease and the changes in intracellular calcium regulation during its progression FASEB Journal, 2013, 27, lb652.	0.2	0
160	Effects of GLPâ€1 receptor agonist on Ca2+ handling in coronary smooth muscle cells from metabolic syndrome Ossabaw swine with coronary artery disease. FASEB Journal, 2013, 27, 1195.5.	0.2	0
161	Augmented Ca 2+ â€activated Ca 2+ influx and voltageâ€gated Ca 2+ entry in coronary vs. peripheral conduit arteries in domestic swine. (LB668). FASEB Journal, 2014, 28, LB668.	0.2	0
162	Effect of metabolic syndrome and aging on coronary artery disease severity and Ca 2+ dysregulation in coronary smooth muscle in Ossabaw miniature swine. FASEB Journal, 2018, 32, 770.16.	0.2	0

#	Article	IF	CITATIONS
163	Coronary Smooth Muscle Cytodifferentiation is Associated with an Increase in Proâ€Inflammatory, Proâ€Calcifying Gene Expression in an Organ Culture Model of Coronary Artery Disease. FASEB Journal, 2019, 33, .	0.2	Ο
164	Similar dysfunctional Ca 2+ regulation in coronary smooth muscle from explanted human hearts and Ossabaw miniature swine strongly supports the translational relevance of this large animal model. FASEB Journal, 2019, 33, 689.5.	0.2	0
165	Ossabaw Pig Demonstrates Detrusor Fibrosis and Detrusor Underactivity Associated with Oxidative Stress in Metabolic Syndrome. Comparative Medicine, 2020, 70, 329-334.	0.4	Ο