MiloÅ; Rydval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/37940/publications.pdf Version: 2024-02-01

ΜιιοΔ: Ρνονλι

#	Article	IF	CITATIONS
1	Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 2016, 134, 1-18.	3.0	314
2	Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 2017, 163, 1-22.	3.0	165
3	The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388, 67-78.	3.2	103
4	Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 2014, 32, 191-204.	2.2	101
5	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
6	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
7	Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. Holocene, 2014, 24, 1428-1438.	1.7	67
8	Reconstructing 800Âyears of summer temperatures in Scotland from tree rings. Climate Dynamics, 2017, 49, 2951-2974.	3.8	53
9	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Clobal Change Biology, 2019, 25, 3136-3150.	9.5	45
10	Facilitating tree-ring dating of historic conifer timbers using Blue Intensity. Journal of Archaeological Science, 2017, 78, 99-111.	2.4	43
11	The Impact of Industrial SO2 Pollution on North Bohemia Conifers. Water, Air, and Soil Pollution, 2012, 223, 5727-5744.	2.4	41
12	Microclimate edge effect in small fragments of temperate forests in the context of climate change. Forest Ecology and Management, 2019, 448, 48-56.	3.2	35
13	Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe. Agricultural and Forest Meteorology, 2018, 253-254, 62-70.	4.8	33
14	Reconstructing Holocene climate from tree rings: The potential for a long chronology from the Scottish Highlands. Holocene, 2012, 22, 3-11.	1.7	31
15	Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Canadian Journal of Forest Research, 2016, 46, 387-401.	1.7	29
16	Spatial reconstruction of Scottish summer temperatures from tree rings. International Journal of Climatology, 2017, 37, 1540-1556.	3.5	26
17	Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. Holocene, 2018, 28, 1574-1587.	1.7	26
18	Assessing non-linearity in European temperature-sensitive tree-ring data. Dendrochronologia, 2020, 59, 125652.	2.2	26

MILOÅ; RYDVAL

#	Article	IF	CITATIONS
19	Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agricultural and Forest Meteorology, 2019, 271, 214-224.	4.8	20
20	Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211631.	2.6	19
21	Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland's failure to cope. Journal of Volcanology and Geothermal Research, 2020, 389, 106746.	2.1	14
22	Trends in climatically driven extreme growth reductions of <i>Picea abies</i> and <i>Pinus sylvestris</i> in Central Europe. Global Change Biology, 2022, 28, 557-570.	9.5	13
23	Both Cycloneâ€induced and Convective Storms Drive Disturbance Patterns in European Primary Beech Forests. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033929.	3.3	12

Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.)) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

25	Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agricultural and Forest Meteorology, 2020, 288-289, 108000.	4.8	9
26	Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agricultural and Forest Meteorology, 2020, 287, 107981.	4.8	9
27	Age and size outperform topographic effects on growth-climate responses of trees in two Central European coniferous forest types. Dendrochronologia, 2021, 68, 125845.	2.2	8
28	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	12.8	8
29	Prospects for dendroanatomy in paleoclimatology – a case study on <i>Picea engelmannii</i> from the Canadian Rockies. Climate of the Past, 2022, 18, 1151-1168.	3.4	7
30	Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. Forest Ecology and Management, 2022, 517, 120272.	3.2	5
31	Increasing water-use efficiency mediates effects of atmospheric carbon, sulfur, and nitrogen on growth variability of central European conifers. Science of the Total Environment, 2022, 838, 156483.	8.0	4