Ali Akherati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3793501/publications.pdf

Version: 2024-02-01

1040056 1281871 1,084 11 9 11 citations h-index g-index papers 17 17 17 2054 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359, 760-764.	12.6	716
2	Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environmental Science & Environmenta	10.0	116
3	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & Environmenta	10.0	72
4	Experimental study of ultrasonic radiation on growth kinetic of asphaltene aggregation and deposition. Canadian Journal of Chemical Engineering, 2016, 94, 2202-2209.	1.7	38
5	Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas. Atmospheric Chemistry and Physics, 2017, 17, 8959-8970.	4.9	32
6	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2019, 19, 4561-4594.	4.9	29
7	Dilution impacts on smoke aging: evidence in Biomass Burning Observation Project (BBOP) data. Atmospheric Chemistry and Physics, 2021, 21, 6839-6855.	4.9	23
8	Particle Size Distribution Dynamics Can Help Constrain the Phase State of Secondary Organic Aerosol. Environmental Science & E	10.0	22
9	Secondary organic aerosol formation from evaporated biofuels: comparison to gasoline and correction for vapor wall losses. Environmental Sciences: Processes and Impacts, 2020, 22, 1461-1474.	3.5	15
10	Simulation of mineral dust aerosols in southwestern iran through numerical prediction models. Environmental Progress and Sustainable Energy, 2018, 37, 1380-1393.	2.3	9
11	Health and Environmental Justice Implications of Retiring Two Coalâ€Fired Power Plants in the Southern Front Range Region of Colorado. GeoHealth, 2019, 3, 266-283.	4.0	9