Daniel E Otzen

List of Publications by Citations

Source: https://exaly.com/author-pdf/3793337/daniel-e-otzen-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 272
 10,213
 55
 93

 papers
 citations
 h-index
 g-index

 293
 11,966
 5.7
 6.75

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
272	Proliferation of amyloid-42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9758-63	11.5	867
271	Protein-surfactant interactions: a tale of many states. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2011 , 1814, 562-91	4	391
270	Amyloid adhesins are abundant in natural biofilms. <i>Environmental Microbiology</i> , 2007 , 9, 3077-90	5.2	229
269	Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. <i>Biophysical Journal</i> , 2002 , 83, 2219-30	2.9	227
268	Aggregation and fibrillation of bovine serum albumin. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2007 , 1774, 1128-38	4	196
267	Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 3246-51	11.5	194
266	The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting. <i>Journal of Molecular Biology</i> , 2006 , 355, 501-23	6.5	192
265	Functional amyloid in Pseudomonas. <i>Molecular Microbiology</i> , 2010 , 77, 1009-20	4.1	187
264	Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2118-21	16.4	181
263	Structural changes in the transition state of protein folding: alternative interpretations of curved chevron plots. <i>Biochemistry</i> , 1999 , 38, 6499-511	3.2	179
262	The role of stable Bynuclein oligomers in the molecular events underlying amyloid formation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3859-68	16.4	163
261	SDS-induced fibrillation of alpha-synuclein: an alternative fibrillation pathway. <i>Journal of Molecular Biology</i> , 2010 , 401, 115-33	6.5	154
260	The antimicrobial mechanism of action of epsilon-poly-l-lysine. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 7758-70	4.8	149
259	We find them here, we find them there: functional bacterial amyloid. <i>Cellular and Molecular Life Sciences</i> , 2008 , 65, 910-27	10.3	144
258	Half a century of amyloids: past, present and future. <i>Chemical Society Reviews</i> , 2020 , 49, 5473-5509	58.5	142
257	ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. <i>Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis</i> , 2017 , 24, 1-16	2.7	139
256	Strategies to increase the reproducibility of protein fibrillization in plate reader assays. <i>Analytical Biochemistry</i> , 2010 , 400, 270-81	3.1	139

(2002-2014)

255	How epigallocatechin gallate can inhibit Bynuclein oligomer toxicity in vitro. <i>Journal of Biological Chemistry</i> , 2014 , 289, 21299-310	5.4	133
254	A SAXS study of glucagon fibrillation. <i>Journal of Molecular Biology</i> , 2009 , 387, 147-61	6.5	130
253	Interactions between folding factors and bacterial outer membrane proteins. <i>Molecular Microbiology</i> , 2005 , 57, 326-46	4.1	122
252	Branching in amyloid fibril growth. <i>Biophysical Journal</i> , 2009 , 96, 1529-36	2.9	120
251	Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. <i>Biochemistry</i> , 2005 , 44, 1719-30	3.2	119
250	The role of decorated SDS micelles in sub-CMC protein denaturation and association. <i>Journal of Molecular Biology</i> , 2009 , 391, 207-26	6.5	116
249	Biosurfactants and surfactants interacting with membranes and proteins: Same but different?. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2017 , 1859, 639-649	3.8	115
248	Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. <i>Journal of Molecular Biology</i> , 2004 , 341, 575-88	6.5	114
247	Expression of Fap amyloids in Pseudomonas aeruginosa, P.Ifluorescens, and P.Iþutida results in aggregation and increased biofilm formation. <i>MicrobiologyOpen</i> , 2013 , 2, 365-82	3.4	105
246	Unfolding of beta-sheet proteins in SDS. <i>Biophysical Journal</i> , 2007 , 92, 3674-85	2.9	104
245	Bynuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. <i>Journal of Neurochemistry</i> , 2019 , 150, 522-534	6	99
244	Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. <i>Nature Communications</i> , 2014 , 5, 3254	17.4	96
243	Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. <i>Journal of Molecular Biology</i> , 2003 , 330, 641-9	6.5	96
242	Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. <i>PLoS ONE</i> , 2012 , 7, e51274	3.7	95
241	Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. <i>Frontiers in Microbiology</i> , 2015 , 6, 1099	5.7	93
240	Alpha-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms. <i>Journal of Colloid and Interface Science</i> , 2009 , 329, 273-83	9.3	93
239	Functional Amyloids. Cold Spring Harbor Perspectives in Biology, 2019, 11,	10.2	92
238	Conformational plasticity in folding of the split beta-alpha-beta protein S6: evidence for burst-phase disruption of the native state. <i>Journal of Molecular Biology</i> , 2002 , 317, 613-27	6.5	92

237	Amyloid structureone but not the same: the many levels of fibrillar polymorphism. <i>FEBS Journal</i> , 2010 , 277, 4591-601	5.7	88
236	Co-existence of two different Bynuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7560-3	16.4	85
235	The N-terminus of ⊞ynuclein is essential for both monomeric and oligomeric interactions with membranes. <i>FEBS Letters</i> , 2014 , 588, 497-502	3.8	84
234	Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 2798-803	11.5	83
233	Assays for Bynuclein aggregation. <i>Methods</i> , 2011 , 53, 295-305	4.6	80
232	Structure of a functional amyloid protein subunit computed using sequence variation. <i>Journal of the American Chemical Society</i> , 2015 , 137, 22-5	16.4	78
231	Functional amyloid: turning swords into plowshares. <i>Prion</i> , 2010 , 4, 256-64	2.3	76
230	Interactions between misfolded protein oligomers and membranes: A central topic in neurodegenerative diseases?. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2015 , 1848, 1897-907	3.8	75
229	Global study of myoglobin-surfactant interactions. <i>Langmuir</i> , 2008 , 24, 399-407	4	72
228	Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. <i>Biochemistry</i> , 2011 , 50, 8281-90	3.2	70
227	Structural basis for cyclodextrins suppression of human growth hormone aggregation. <i>Protein Science</i> , 2002 , 11, 1779-87	6.3	67
226	The influence of vesicle size and composition on alpha-synuclein structure and stability. <i>Biophysical Journal</i> , 2009 , 96, 2857-70	2.9	66
225	Amyloid-a state in many guises: survival of the fittest fibril fold. <i>Protein Science</i> , 2008 , 17, 2-10	6.3	66
224	Burst-phase expansion of native protein prior to global unfolding in SDS. <i>Journal of Molecular Biology</i> , 2002 , 315, 1231-40	6.5	66
223	Amyloid formation in surfactants and alcohols: membrane mimetics or structural switchers?. <i>Current Protein and Peptide Science</i> , 2010 , 11, 355-71	2.8	63
222	Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11. Journal of the American Chemical Society, 2016 , 138, 402-7	16.4	61
221	Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 4101-10	4.8	61
220	High stability and cooperative unfolding of ⊞ynuclein oligomers. <i>Biochemistry</i> , 2014 , 53, 6252-63	3.2	56

219	Folding of outer membrane proteins. Archives of Biochemistry and Biophysics, 2013, 531, 34-43	4.1	56
218	Electrostatics in the active site of an alpha-amylase. <i>FEBS Journal</i> , 1999 , 264, 816-24		55
217	Effect of protein-surfactant interactions on aggregation of Elactoglobulin. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2011 , 1814, 713-23	4	54
216	The interaction of equine lysozyme:oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism. <i>Journal of Molecular Biology</i> , 2010 , 398, 351-61	6.5	53
215	A comparative study of the unfolding of the endoglucanase Cel45 from Humicola insolens in denaturant and surfactant. <i>Protein Science</i> , 1999 , 8, 1878-87	6.3	52
214	Proteins in a brave new surfactant world. Current Opinion in Colloid and Interface Science, 2015, 20, 161-	-1,60	49
213	Human phenotypically distinct TGFBI corneal dystrophies are linked to the stability of the fourth FAS1 domain of TGFBIp. <i>Journal of Biological Chemistry</i> , 2011 , 286, 4951-8	5.4	49
212	Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition. <i>Biochemistry</i> , 2007 , 46, 7314-24	3.2	48
211	Glucagon fibril polymorphism reflects differences in protofilament backbone structure. <i>Journal of Molecular Biology</i> , 2010 , 397, 932-46	6.5	47
210	Wildtype and A30P mutant alpha-synuclein form different fibril structures. <i>PLoS ONE</i> , 2013 , 8, e67713	3.7	45
209	Cooperative folding of a polytopic Helical membrane protein involves a compact N-terminal nucleus and nonnative loops. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7978-83	11.5	44
208	Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore. <i>Journal of Biological Chemistry</i> , 2014 , 289, 19098-109	5.4	43
207	Evolutionary insight into the functional amyloids of the pseudomonads. <i>PLoS ONE</i> , 2013 , 8, e76630	3.7	43
206	In vitro and in silico assessment of the developability of a designed monoclonal antibody library. <i>MAbs</i> , 2019 , 11, 388-400	6.6	43
205	Potent Esynuclein Aggregation Inhibitors, Identified by High-Throughput Screening, Mainly Target the Monomeric State. <i>Cell Chemical Biology</i> , 2018 , 25, 1389-1402.e9	8.2	43
204	Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. <i>Journal of Biological Chemistry</i> , 2016 , 291, 26540-26553	5.4	42
203	A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. <i>Nature Communications</i> , 2017 , 8, 263	17.4	41
202	Pardaxin permeabilizes vesicles more efficiently by pore formation than by disruption. <i>Biophysical Journal</i> , 2010 , 98, 576-85	2.9	40

201	p25alpha is flexible but natively folded and binds tubulin with oligomeric stoichiometry. <i>Protein Science</i> , 2005 , 14, 1396-409	6.3	40
2 00	Versatile interactions of the antimicrobial peptide novispirin with detergents and lipids. <i>Biochemistry</i> , 2006 , 45, 481-97	3.2	40
199	Physical Determinants of Amyloid Assembly in Biofilm Formation. <i>MBio</i> , 2019 , 10,	7.8	40
198	Protein-fatty acid complexes: biochemistry, biophysics and function. FEBS Journal, 2013, 280, 1733-49	5.7	39
197	A simple way to measure protein refolding rates in water. <i>Journal of Molecular Biology</i> , 2001 , 313, 479-8	33 .5	38
196	The role of proteins in biosilicification. <i>Scientifica</i> , 2012 , 2012, 867562	2.6	35
195	Oleuropein derivatives from olive fruit extracts reduce Bynuclein fibrillation and oligomer toxicity. <i>Journal of Biological Chemistry</i> , 2019 , 294, 4215-4232	5.4	34
194	Alterations in Blood Monocyte Functions in Parkinson® Disease. Movement Disorders, 2019, 34, 1711-17	2/1	33
193	Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and 岳ynuclein. <i>ACS Nano</i> , 2019 , 13, 3243-3256	16.7	33
192	The anionic biosurfactant rhamnolipid does not denature industrial enzymes. <i>Frontiers in Microbiology</i> , 2015 , 6, 292	5.7	31
191	A kinetic analysis of the folding and unfolding of OmpA in urea and guanidinium chloride: single and parallel pathways. <i>Biochemistry</i> , 2012 , 51, 8371-83	3.2	31
190	How chain length and charge affect surfactant denaturation of acyl coenzyme A binding protein (ACBP). <i>Journal of Physical Chemistry B</i> , 2009 , 113, 13942-52	3.4	31
189	Refolding of SDS-Unfolded Proteins by Nonionic Surfactants. <i>Biophysical Journal</i> , 2017 , 112, 1609-1620	2.9	30
188	Generic structures of cytotoxic liprotides: nano-sized complexes with oleic acid cores and shells of disordered proteins. <i>ChemBioChem</i> , 2014 , 15, 2693-702	3.8	30
187	Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2812-22	4	28
186	The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids. Journal of Biological Chemistry, 2015 , 290, 20590-600	5.4	28
185	A thermodynamic analysis of fibrillar polymorphism. <i>Biophysical Chemistry</i> , 2010 , 149, 40-6	3.5	28
184	Aggregation of S6 in a quasi-native state by sub-micellar SDS. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2008 , 1784, 400-14	4	28

(2006-2018)

183	Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 161, 578-587	6	28	
182	Protein Engineering Reveals Mechanisms of Functional Amyloid Formation in Pseudomonas aeruginosa Biofilms. <i>Journal of Molecular Biology</i> , 2018 , 430, 3751-3763	6.5	27	
181	Folding of outer membrane protein A in the anionic biosurfactant rhamnolipid. <i>FEBS Letters</i> , 2014 , 588, 1955-60	3.8	26	
180	Mapping out the multistage fibrillation of glucagon. <i>FEBS Journal</i> , 2012 , 279, 752-65	5.7	26	
179	Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter Bynuclein conformation and aggregation kinetics. <i>Nanoscale</i> , 2015 , 7, 19627-40	7.7	25	
178	Esynuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology. <i>Journal of Neuroinflammation</i> , 2016 , 13, 74	10.1	25	
177	The importance of being capped: Terminal capping of an amyloidogenic peptide affects fibrillation propensity and fibril morphology. <i>Biochemistry</i> , 2014 , 53, 6968-80	3.2	25	
176	Mapping the folding pathway of the transmembrane protein DsbB by protein engineering. <i>Protein Engineering, Design and Selection</i> , 2011 , 24, 139-49	1.9	25	
175	The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson B Disease. <i>Nanoscale</i> , 2018 , 10, 9174-9185	7.7	24	
174	A complete picture of protein unfolding and refolding in surfactants. <i>Chemical Science</i> , 2019 , 11, 699-7	'1 2).4	24	
173	Formation and Characterization of Esynuclein Oligomers. <i>Methods in Molecular Biology</i> , 2016 , 1345, 133-50	1.4	23	
172	The neural chaperone proSAAS blocks Bynuclein fibrillation and neurotoxicity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4708-15	11.5	23	
171	Denaturation of Hactalbumin and myoglobin by the anionic biosurfactant rhamnolipid. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2014 , 1844, 2338-45	4	23	
170	Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 7652-9	3.4	23	
169	Mechanical stress affects glucagon fibrillation kinetics and fibril structure. <i>Langmuir</i> , 2011 , 27, 12539-4	194	23	
168	Interaction and Stability of Mixed Micelle and Monolayer of Nonionic and Cationic Surfactant Mixtures. <i>Journal of Dispersion Science and Technology</i> , 2009 , 30, 1050-1058	1.5	23	
167	The role of protonation in protein fibrillation. FEBS Letters, 2010, 584, 780-4	3.8	23	
	Interactions between anionic mixed micelles and Eyclodextrin and their inclusion complexes:			

165	Antibodies against the C-terminus of Bynuclein modulate its fibrillation. <i>Biophysical Chemistry</i> , 2017 , 220, 34-41	3.5	22
164	Correspondence between anomalous m- and DeltaCp-values in protein folding. <i>Protein Science</i> , 2004 , 13, 3253-63	6.3	22
163	Early events in copper-ion catalyzed oxidation of Bynuclein. <i>Free Radical Biology and Medicine</i> , 2018 , 121, 38-50	7.8	21
162	Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin. <i>Journal of Pharmaceutical Sciences</i> , 2016 , 105, 1376-86	3.9	21
161	Membrane interactions of novicidin, a novel antimicrobial peptide: phosphatidylglycerol promotes bilayer insertion. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 11053-60	3.4	21
160	Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2010 , 1804, 806-20	4	21
159	Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Advanced Science, 2020, 7, 2001299	13.6	21
158	Stable intermediates determine proteinsRprimary unfolding sites in the presence of surfactants. <i>Biopolymers</i> , 2009 , 91, 221-31	2.2	20
157	Two conformationally distinct Bynuclein oligomers share common epitopes and the ability to impair long-term potentiation. <i>PLoS ONE</i> , 2019 , 14, e0213663	3.7	19
156	Low-resolution structures of OmpA?DDM protein-detergent complexes. <i>ChemBioChem</i> , 2014 , 15, 2113-	2₉4 8	19
155	Folding energetics and oligomerization of polytopic Enelical transmembrane proteins. <i>Archives of Biochemistry and Biophysics</i> , 2014 , 564, 281-96	4.1	19
154	Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (TGFBI) gene. <i>Proteomics - Clinical Applications</i> , 2014 , 8, 168-7	7 ^{3.1}	19
153	Polymorphic fibrillation of the destabilized fourth fasciclin-1 domain mutant A546T of the Transforming growth factor-Enduced protein (TGFBIp) occurs through multiple pathways with different oligomeric intermediates. <i>Journal of Biological Chemistry</i> , 2012 , 287, 34730-42	5.4	19
152	Incorporation of Esilicon-B-Amino Acids in the Antimicrobial Peptide Alamethicin Provides a 20-Fold Increase in Membrane Permeabilization. <i>Chemistry - A European Journal</i> , 2016 , 22, 8358-67	4.8	19
151	Liprotides made of <code>Hactalbumin</code> and cis fatty acids form core-shell and multi-layer structures with a common membrane-targeting mechanism. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2016 , 1864, 847-59	4	19
150	Imperfect repeats in the functional amyloid protein FapC reduce the tendency to fragment during fibrillation. <i>Protein Science</i> , 2019 , 28, 633-642	6.3	19
149	Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Strains by Directing Monomers to Off-Pathway Oligomers. <i>Biomolecules</i> , 2019 , 9,	5.9	18
148	Multiple roles of heparin in the aggregation of p25\(\textit{\overline{1}}\) Journal of Molecular Biology, 2012 , 421, 601-15	6.5	18

(2012-2017)

147	Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils. Biophysical Journal, 2017 , 113, 580-596	2.9	17
146	Differential adsorption of variants of the Thermomyces lanuginosus lipase on a hydrophobic surface suggests a role for local flexibility. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 64, 223-8	6	17
145	Reducing the Amyloidogenicity of Functional Amyloid Protein FapC Increases Its Ability To Inhibit Bynuclein Fibrillation. <i>ACS Omega</i> , 2019 , 4, 4029-4039	3.9	17
144	The Use of Liprotides To Stabilize and Transport Hydrophobic Molecules. <i>Biochemistry</i> , 2015 , 54, 4815-2	23,.2	16
143	Topological constraints and modular structure in the folding and functional motions of GlpG, an intramembrane protease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2098-103	11.5	16
142	Myoglobin and <code>Lactalbumin</code> Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS. <i>Biophysical Journal</i> , 2017 , 113, 2621-2633	2.9	16
141	Interactions and influence of Eyclodextrin on the aggregation and interfacial properties of mixtures of nonionic and zwitterionic surfactants. <i>Colloid and Polymer Science</i> , 2009 , 287, 1243-1252	2.4	16
140	Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. <i>Progress in Retinal and Eye Research</i> , 2020 , 77, 100843	20.5	16
139	Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes Bynuclein in the unfolded conformation and inhibits aggregation. <i>RSC Advances</i> , 2016 , 6, 85312-85323	3.7	16
138	The length distribution of frangible biofilaments. <i>Journal of Chemical Physics</i> , 2015 , 143, 164901	3.9	15
137	Characterization of dry globular proteins and protein fibrils by synchrotron radiation vacuum UV circular dichroism. <i>Biopolymers</i> , 2008 , 89, 779-95	2.2	15
136	How Glycosaminoglycans Promote Fibrillation of Salmon Calcitonin. <i>Journal of Biological Chemistry</i> , 2016 , 291, 16849-62	5.4	15
135	Breakdown of supersaturation barrier links protein folding to amyloid formation. <i>Communications Biology</i> , 2021 , 4, 120	6.7	15
134	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. <i>PLoS Computational Biology</i> , 2020 , 16, e1007767	5	14
133	Predicted Loop Regions Promote Aggregation: A Study of Amyloidogenic Domains in the Functional Amyloid FapC. <i>Journal of Molecular Biology</i> , 2020 , 432, 2232-2252	6.5	14
132	Bacterial amphiphiles as amyloid inducers: Effect of Rhamnolipid and Lipopolysaccharide on FapC fibrillation. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2019 , 1867, 140263	4	14
131	Liprotides kill cancer cells by disrupting the plasma membrane. <i>Scientific Reports</i> , 2017 , 7, 15129	4.9	14
130	Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2012 , 1824, 274-85	4	14

Using protein-fatty acid complexes to improve vitamin D stability. Journal of Dairy Science, 2016, 99, 7755-776714

128	Esynucleins from Animal Species Show Low Fibrillation Propensities and Weak Oligomer Membrane Disruption. <i>Biochemistry</i> , 2018 , 57, 5145-5158	3.2	13
127	Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. <i>Proteins: Structure, Function and Bioinformatics</i> , 2015 , 83, 2039-51	4.2	13
126	Alpha-synuclein and familial variants affect the chain order and the thermotropic phase behavior of anionic lipid vesicles. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2016 , 1864, 1206-1214	4	13
125	Esynuclein Oligomers: A Study in Diversity. <i>Israel Journal of Chemistry</i> , 2017 , 57, 699-723	3.4	12
124	A Possible Connection Between Plant Longevity and the Absence of Protein Fibrillation: Basis for Identifying Aggregation Inhibitors in Plants. <i>Frontiers in Plant Science</i> , 2019 , 10, 148	6.2	12
123	Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. <i>Small</i> , 2020 , 16, e1906674	11	12
122	Corneal Dystrophy Mutations Drive Pathogenesis by Targeting TGFBIp Stability and Solubility in a Latent Amyloid-forming Domain. <i>Journal of Molecular Biology</i> , 2018 , 430, 1116-1140	6.5	12
121	Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2009 , 1794, 84-93	4	12
120	Oligomers of Bynuclein: picking the culprit in the line-up. <i>Essays in Biochemistry</i> , 2014 , 56, 137-48	7.6	12
119	Unfolding and partial refolding of a cellulase from the SDS-denatured state: From Esheet to Helix and back. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2020 , 1864, 129434	4	12
118	Can a Charged Surfactant Unfold an Uncharged Protein?. <i>Biophysical Journal</i> , 2018 , 115, 2081-2086	2.9	12
117	Transient formation of nano-crystalline structures during fibrillation of an Abeta-like peptide. <i>Protein Science</i> , 2004 , 13, 1417-21	6.3	11
116	Weak and Saturable Protein-Surfactant Interactions in the Denaturation of Apo-Lactalbumin by Acidic and Lactonic Sophorolipid. <i>Frontiers in Microbiology</i> , 2016 , 7, 1711	5.7	11
115	DIBMA nanodiscs keep ⊞ynuclein folded. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2020 , 1862, 183314	3.8	10
114	Off-pathway aggregation can inhibit fibrillation at high protein concentrations. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2013 , 1834, 677-87	4	10
113	Synthesis of a ketomethylene isostere of the fibrillating peptide SNNFGAILSS. <i>Journal of Organic Chemistry</i> , 2009 , 74, 7955-7	4.2	10
112	Molecular dynamics study of ACBP denaturation in alkyl sulfates demonstrates possible pathways of unfolding through fused surfactant clusters. <i>Protein Engineering, Design and Selection</i> , 2019 , 32, 175	5-158	10

(2021-2021)

111	Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: Equilibrium isotherm and kinetic modeling. <i>Journal of Colloid and Interface Science</i> , 2021 , 602, 490-503	9.3	10
110	Glycolipid Biosurfactants Activate, Dimerize, and Stabilize Thermomyces lanuginosus Lipase in a pH-Dependent Fashion. <i>Biochemistry</i> , 2017 , 56, 4256-4268	3.2	9
109	Functional Amyloids in Bacteria 2013 , 411-438		9
108	Aggregation as the basis for complex behaviour of cutinase in different denaturants. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2007 , 1774, 323-33	4	9
107	Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2019 , 1867, 519-528	4	9
106	A Complex Dance: The Importance of Glycosaminoglycans and Zinc in the Aggregation of Human Prolactin. <i>Biochemistry</i> , 2016 , 55, 3674-84	3.2	8
105	The Kinetics and Mechanisms of Amyloid Formation 2013 , 183-209		8
104	Quantitating denaturation by formic acid: imperfect repeats are essential to the stability of the functional amyloid protein FapC. <i>Journal of Biological Chemistry</i> , 2020 , 295, 13031-13046	5.4	8
103	Conservation of the Amyloid Interactome Across Diverse Fibrillar Structures. <i>Scientific Reports</i> , 2019 , 9, 3863	4.9	7
102	The natural, peptaibolic peptide SPF-5506-A4 adopts a Ebend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2015 , 1854, 882-9	4	7
101	Amyloid Formation of Esynuclein Based on the Solubility- and Supersaturation-Dependent Mechanism. <i>Langmuir</i> , 2020 , 36, 4671-4681	4	7
100	Pseudomonas aeruginosa rhamnolipid induces fibrillation of human synuclein and modulates its effect on biofilm formation. <i>FEBS Letters</i> , 2018 , 592, 1484-1496	3.8	7
99	Synergistic behavior of sodiumdodecylsulfate and 1,2-diheptanoyl-sn- glycero-3-phosphocholine in an aqueous medium: interfacial and bulk behavior. <i>Colloid and Polymer Science</i> , 2005 , 283, 1219-1225	2.4	7
98	Antagonism, non-native interactions and non-two-state folding in S6 revealed by double-mutant cycle analysis. <i>Protein Engineering, Design and Selection</i> , 2005 , 18, 547-57	1.9	7
97	A Monte Carlo Study of the Early Steps of Functional Amyloid Formation. <i>PLoS ONE</i> , 2016 , 11, e0146096	53.7	7
96	Novel noscapine derivatives stabilize the native state of insulin against fibrillation. <i>International Journal of Biological Macromolecules</i> , 2020 , 147, 98-108	7.9	7
95	Multi-Step Unfolding and Rearrangement of <code>Lactalbumin</code> by SDS Revealed by Stopped-Flow SAXS. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 125	5.6	7
94	A multimethod approach for analyzing FapC fibrillation and determining mass per length. <i>Biophysical Journal</i> , 2021 , 120, 2262-2275	2.9	7

93	Epigallocatechin Gallate Remodels Fibrils of Lattice Corneal Dystrophy Protein, Facilitating Proteolytic Degradation and Preventing Formation of Membrane-Permeabilizing Species. <i>Biochemistry</i> , 2016 , 55, 2344-57	3.2	7
92	Role of Charge and Hydrophobicity in Liprotide Formation: A Molecular Dynamics Study with Experimental Constraints. <i>ChemBioChem</i> , 2018 , 19, 263-271	3.8	7
91	The Sheaths of Are Made of a New Type of Amyloid Protein. Frontiers in Microbiology, 2018, 9, 2729	5.7	7
90	Scaffolded multimers of hIAPP(20-29) peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP(20-29) peptide fragment. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2015 , 1854, 1890-1897	4	6
89	Co-existence of Two Different Bynuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. <i>Angewandte Chemie</i> , 2014 , 126, 7690-7693	3.6	6
88	Reduction in the amount of 8-hydroxy-2Rdeoxyguanosine in the DNA of SV40-transformed human fibroblasts as compared with normal cells in culture. <i>FEBS Letters</i> , 1993 , 318, 186-8	3.8	6
87	Inhibitors of Esynuclein Fibrillation and Oligomer Toxicity in: The All-Pervading Powers of Flavonoids and Phenolic Glycosides. <i>ACS Chemical Neuroscience</i> , 2020 , 11, 3161-3173	5.7	6
86	C subunit of the ATP synthase is an amyloidogenic calcium dependent channel-forming peptide with possible implications in mitochondrial permeability transition. <i>Scientific Reports</i> , 2021 , 11, 8744	4.9	6
85	Microfluidics and the quantification of biomolecular interactions. <i>Current Opinion in Structural Biology</i> , 2021 , 70, 8-15	8.1	6
84	Release of Pharmaceutical Peptides in an Aggregated State: Using Fibrillar Polymorphism to Modulate Release Levels. <i>Colloids and Interfaces</i> , 2019 , 3, 42	3	5
83	Peak Force InfraredKelvin Probe Force Microscopy. <i>Angewandte Chemie</i> , 2020 , 132, 16217-16224	3.6	5
82	Peak Force Infrared-Kelvin Probe Force Microscopy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16083-16090	16.4	5
81	The Compact and Biologically Relevant Structure of Inter-Anhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations. <i>Journal of Biological Chemistry</i> , 2016 , 291, 4658-70	5.4	5
80	The Changing Face of Aging: Highly Sulfated Glycosaminoglycans Induce Amyloid Formation in a Lattice Corneal Dystrophy Model Protein. <i>Journal of Molecular Biology</i> , 2017 , 429, 2755-2764	6.5	5
79	Assembling good amyloid: some structures at last. Structure, 2011, 19, 1207-9	5.2	5
78	Influence of ECyclodextrin on the Mixed Micellization Process of Sodium Dodecyl Sulfate and Sodium Lauroyl Sarcosine and Formation of Inclusion Complexes. <i>Journal of Dispersion Science and Technology</i> , 2008 , 29, 128-133	1.5	5
77	Conformational detours during folding of a collapsed state. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2005 , 1750, 146-53	4	5
76	Bacterial Amyloids: Biogenesis and Biomaterials. <i>Advances in Experimental Medicine and Biology</i> , 2019 , 1174, 113-159	3.6	5

(2022-2020)

75	The interactome of stabilized Bynuclein oligomers and neuronal proteins. <i>FEBS Journal</i> , 2020 , 287, 2037-2054	5.7	5
74	SDS-induced multi-stage unfolding of a small globular protein through different denatured states revealed by single-molecule fluorescence. <i>Chemical Science</i> , 2020 , 11, 9141-9153	9.4	5
73	Human Lysozyme Peptidase Resistance Is Perturbed by the Anionic Glycolipid Biosurfactant Rhamnolipid Produced by the Opportunistic Pathogen Pseudomonas aeruginosa. <i>Biochemistry</i> , 2017 , 56, 260-270	3.2	4
72	Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions. <i>Methods in Molecular Biology</i> , 2019 , 2003, 31-52	1.4	4
71	Stabilizing vitamin D using the molten globule state of ⊞actalbumin. <i>Journal of Dairy Science</i> , 2018 , 101, 1817-1826	4	4
70	Liprotides assist in folding of outer membrane proteins. <i>Protein Science</i> , 2018 , 27, 451-462	6.3	4
69	The Role of Alin Alzheimerß Disease 2013 , 263-293		4
68	Interactions of Ecyclodextrin with the Mixed Micelles of Anionic Surfactants and Their Inclusion Complexes Formation. <i>Journal of Dispersion Science and Technology</i> , 2008 , 29, 885-890	1.5	4
67	MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. <i>Frontiers in Molecular Neuroscience</i> , 2020 , 13, 582488	6.1	4
66	Structures and mechanisms of formation of liprotides. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2020 , 1868, 140505	4	4
65	The Use of Surfactants to Solubilise a Glucagon Analogue. <i>Pharmaceutical Research</i> , 2018 , 35, 235	4.5	4
64	Using Liprotides to Deliver Cholesterol to the Plasma Membrane. <i>Journal of Membrane Biology</i> , 2018 , 251, 581-592	2.3	3
63	Promoting protein self-association in non-glycosylated Thermomyces lanuginosus lipase based on crystal lattice contacts. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2015 , 1854, 1914-1921	4	3
62	Fluorescence Spectroscopy as a Tool to Characterize Amyloid Oligomers and Fibrils 2013 , 211-243		3
61	Experimental Approaches to Inducing Amyloid Aggregates 2013 , 295-320		3
60	Hormone Amyloids in Sickness and in Health 2013 , 395-410		3
59	The C-terminal tail of ⊞ynuclein protects against aggregate replication but is critical for oligomerization <i>Communications Biology</i> , 2022 , 5, 123	6.7	3
58	A Protein Corona Modulates Interactions of synuclein with Nanoparticles and Alters the Rates of the Microscopic Steps of Amyloid Formation <i>ACS Nano</i> , 2022 ,	16.7	3

57	Amyloid fibril inhibition, acceleration, or fragmentation; Are nano-based approaches advance in the right direction?. <i>Nano Today</i> , 2020 , 35, 100983	17.9	3
56	Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. <i>Biochemistry</i> , 2016 , 55, 7123-7140	3.2	3
55	Multiple Protective Roles of Nanoliposome-Incorporated Baicalein against Alpha-Synuclein Aggregates. <i>Advanced Functional Materials</i> , 2021 , 31, 2007765	15.6	3
54	Dynamic content exchange between liprotides. <i>Biophysical Chemistry</i> , 2018 , 233, 13-18	3.5	3
53	How epigallocatechin gallate binds and assembles oligomeric forms of human alpha-synuclein. <i>Journal of Biological Chemistry</i> , 2021 , 296, 100788	5.4	3
52	Tailoring thermal treatment to form liprotide complexes between oleic acid and different proteins. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2017 , 1865, 682-693	4	2
51	A monomer-trimer model supports intermittent glucagon fibril growth. Scientific Reports, 2015, 5, 9005	4.9	2
50	Protein aggregation: close encounters of the greasy kind. <i>Nature Chemical Biology</i> , 2015 , 11, 176-7	11.7	2
49	The Amyloid Phenomenon and Its Significance 2013 , 1-19		2
48	What Does Solid-State NMR Tell Us about Amyloid Structures? 2013 , 39-61		2
47	The changing face of SDS denaturation: Complexes of Thermomyces lanuginosus lipase with SDS at pH 4.0, 6.0 and 8.0 <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 214-232	9.3	2
46	Folding Steps in the Fibrillation of Functional Amyloid: Denaturant Sensitivity Reveals Common Features in Nucleation and Elongation. <i>Journal of Molecular Biology</i> , 2021 , 434, 167337	6.5	2
45	Peroxynitrous acid (ONOOH) modifies the structure of anastellin and influences its capacity to polymerize fibronectin. <i>Redox Biology</i> , 2020 , 36, 101631	11.3	2
44	In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy <i>Small Methods</i> , 2021 , 5, e2001002	12.8	2
43	Driving forces in amyloidosis: How does a light chain make a heavy heart?. <i>Journal of Biological Chemistry</i> , 2021 , 296, 100785	5.4	2
42	Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. <i>Journal of Biological Chemistry</i> , 2021 , 297, 100953	5.4	2
41	Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from	5·4 9·3	2

39	Near-complete 1H, 13C, 15N resonance assignments of dimethylsulfoxide-denatured TGFBIp FAS1-4 A546T. <i>Biomolecular NMR Assignments</i> , 2016 , 10, 25-9	0.7	1
38	The transcriptional regulator GalR self-assembles to form highly regular tubular structures. <i>Scientific Reports</i> , 2016 , 6, 27672	4.9	1
37	N for AsN - O for strOcture? A strand-loop-strand motif for prokaryotic O-glycosylation. <i>Molecular Microbiology</i> , 2012 , 83, 879-83	4.1	1
36	From Molecular to Supramolecular Amyloid Structures: Contributions from Fiber Diffraction and Electron Microscopy 2013 , 63-84		1
35	Pathways of Amyloid Formation 2013 , 151-166		1
34	Fibrillar Polymorphism 2013 , 321-343		1
33	Inhibitors of Amyloid and Oligomer Formation 2013 , 345-372		1
32	Development of Therapeutic Strategies for the Transthyretin Amyloidoses 2013 , 373-394		1
31	Harnessing the Self-Assembling Properties of Proteins in Spider Silk and Lung Surfactant 2013 , 455-470)	1
30	An Altoncatemer with altered aggregation propensities. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2010 , 1804, 2025-35	4	1
29	Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy. <i>Langmuir</i> , 2021 , 37, 13452-13459	4	1
28	Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. <i>Biochemistry</i> , 2021 , 60, 3644-3658	3.2	1
27	C subunit of the ATP synthase is an amyloidogenic channel-forming peptide: possible implications in mitochondrial pathogenesis		1
26	Quantitating denaturation by formic acid: Imperfect repeats are essential to the stability of the functional amyloid protein FapC		1
25	Identification of amyloidogenic proteins in the microbiomes of a rat Parkinsonß disease model and wild-type rats. <i>Protein Science</i> , 2021 , 30, 1854-1870	6.3	1
24	Molecular characteristics of porcine alpha-synuclein splicing variants. <i>Biochimie</i> , 2021 , 180, 121-133	4.6	1
23	The status of the terminal regions of Bynuclein in different forms of aggregates during fibrillization. <i>International Journal of Biological Macromolecules</i> , 2020 , 155, 543-550	7.9	О
22	Bidirectional protein-protein interactions control liquid-liquid phase separation of PSD-95 and its interaction partners <i>IScience</i> , 2022 , 25, 103808	6.1	O

21	Induction, inhibition, and incorporation: Different roles for anionic and zwitterionic lysolipids in the fibrillation of the functional amyloid FapC <i>Journal of Biological Chemistry</i> , 2022 , 101569	5.4	0
20	A semi high-throughput method for real-time monitoring of curli producing biofilms on air-solid interfaces. <i>Biofilm</i> , 2021 , 3, 100060	5.9	O
19	Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation <i>Chemical Science</i> , 2022 , 13, 536-553	9.4	O
18	Human Fibrinogen Inhibits Amyloid Assembly of Most Phenol-Soluble Modulins from. <i>ACS Omega</i> , 2021 , 6, 21960-21970	3.9	О
17	Glycation modulates alpha-synuclein fibrillization kinetics: a sweet spot for inhibition <i>Journal of Biological Chemistry</i> , 2022 , 101848	5.4	O
16	Low dose DMSO treatment induces oligomerization and accelerates aggregation of	4.9	O
15	Amyloid Structures at the Atomic Level: Insights from Crystallography 2013 , 21-38		
14	Structures of Aggregating Species by Small-Angle X-Ray Scattering 2013 , 85-102		
13	Structural and Compositional Information about Pre-Amyloid Oligomers 2013, 103-126		
12	The Oligomer Species: Mechanistics and Biochemistry 2013 , 127-150		
11	Sequence-Based Prediction of Protein Behavior 2013 , 167-182		
10	Sequence-Based Prediction of Protein Behavior 2013 , 167-182 Animal Models of Amyloid Diseases 2013 , 245-262		
10	Animal Models of Amyloid Diseases 2013 , 245-262		
10	Animal Models of Amyloid Diseases 2013, 245-262 Structural Properties and Applications of Self-Assembling Peptides 2013, 439-454 Surfactants and Alcohols as Inducers of Protein Amyloid: Aggregation Chaperones or Membrane	0.9	
10 9 8	Animal Models of Amyloid Diseases 2013, 245-262 Structural Properties and Applications of Self-Assembling Peptides 2013, 439-454 Surfactants and Alcohols as Inducers of Protein Amyloid: Aggregation Chaperones or Membrane Simulators? 2011, 57-92 The neuroendocrine peptide 7B2 prevents neurodegenerative disease-related protein aggregation.	0.9	
9 8 7	Animal Models of Amyloid Diseases 2013, 245-262 Structural Properties and Applications of Self-Assembling Peptides 2013, 439-454 Surfactants and Alcohols as Inducers of Protein Amyloid: Aggregation Chaperones or Membrane Simulators? 2011, 57-92 The neuroendocrine peptide 7B2 prevents neurodegenerative disease-related protein aggregation. FASEB Journal, 2012, 26, 752.6 Per-glycosylation of the Surface-Accessible Lysines: One-Pot Aqueous Route to Stabilized Proteins		

LIST OF PUBLICATIONS

- The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth **2020**, 16, e1007767
- The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth **2020**, 16, e1007767
- The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth **2020**, 16, e1007767