Yannick Pauchet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3793333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Duplication of Horizontally Acquired GH5_2 Enzymes Played a Central Role in the Evolution of Longhorned Beetles. Molecular Biology and Evolution, 2022, 39, .	3.5	6
2	Larvae of longhorned beetles (Coleoptera; Cerambycidae) have evolved a diverse and phylogenetically conserved array of plant cell wall degrading enzymes. Systematic Entomology, 2021, 46, 784-797.	1.7	13
3	New Players in the Interaction Between Beetle Polygalacturonases and Plant Polygalacturonase-Inhibiting Proteins: Insights From Proteomics and Gene Expression Analyses. Frontiers in Plant Science, 2021, 12, 660430.	1.7	6
4	Multifunctional cellulase enzymes are ancestral in Polyneoptera. Insect Molecular Biology, 2020, 29, 124-135.	1.0	21
5	Effects of classâ€specific, synthetic, and natural proteinase inhibitors on lifeâ€history traits of the cotton bollworm Helicoverpa armigera. Archives of Insect Biochemistry and Physiology, 2020, 103, e21647.	0.6	9
6	Analyzing the Substrate Specificity of a Class of Longâ€Hornedâ€Beetleâ€Derived Xylanases by Using Synthetic Arabinoxylan Oligo†and Polysaccharides. ChemBioChem, 2020, 21, 1517-1525.	1.3	9
7	Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nature Communications, 2020, 11, 2964.	5.8	42
8	Symbiont Digestive Range Reflects Host Plant Breadth in Herbivorous Beetles. Current Biology, 2020, 30, 2875-2886.e4.	1.8	57
9	Direct evidence for a new mode of plant defense against insects via a novel polygalacturonase-inhibiting protein expression strategy. Journal of Biological Chemistry, 2020, 295, 11833-11844.	1.6	16
10	Plants use identical inhibitors to protect their cell wall pectin against microbes and insects. Ecology and Evolution, 2020, 10, 3814-3824.	0.8	11
11	Pectin Digestion in Herbivorous Beetles: Impact of Pseudoenzymes Exceeds That of Their Active Counterparts. Frontiers in Physiology, 2019, 10, 685.	1.3	13
12	A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis. Insect Biochemistry and Molecular Biology, 2019, 113, 103212.	1.2	11
13	Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytophaga beetles. BMC Evolutionary Biology, 2019, 19, 100.	3.2	30
14	A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Scientific Reports, 2018, 8, 1931.	1.6	215
15	Cellulose degradation in <i>Gastrophysa viridula</i> (Coleoptera: Chrysomelidae): functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. Insect Molecular Biology, 2018, 27, 633-650.	1.0	20
16	Evolution and functional characterization of CAZymes belonging to subfamily 10 of glycoside hydrolase family 5 (GH5_10) in two species of phytophagous beetles. PLoS ONE, 2017, 12, e0184305.	1.1	29
17	A P-Glycoprotein Is Linked to Resistance to the Bacillus thuringiensis Cry3Aa Toxin in a Leaf Beetle. Toxins, 2016, 8, 362.	1.5	50
18	Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biology and Evolution, 2016, 8, 1785-1801.	1.1	155

ΥΑΝΝΙCΚ ΡΑUCHET

#	Article	IF	CITATIONS
19	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	1.2	154
20	Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochemistry and Molecular Biology, 2016, 76, 109-117.	1.2	68
21	Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biology, 2016, 17, 227.	3.8	244
22	Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects. Scientific Reports, 2016, 6, 26388.	1.6	78
23	Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications, 2016, 7, 12530.	5.8	27
24	Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). Insect Biochemistry and Molecular Biology, 2016, 71, 1-11.	1.2	22
25	How the rice weevil breaks down the pectin network: Enzymatic synergism and sub-functionalization. Insect Biochemistry and Molecular Biology, 2016, 71, 72-82.	1.2	38
26	Evolutionary history of plant cell wall degrading enzymes in phytophagous beetles. , 2016, , .		0
27	Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. Insect Biochemistry and Molecular Biology, 2015, 59, 18-29.	1.2	85
28	What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket. PLoS ONE, 2015, 10, e0140191.	1.1	8
29	Molecular Evolution of Glycoside Hydrolase Genes in the Western Corn Rootworm (Diabrotica) Tj ETQq1 1 0.784	4314.rgBT 1.1	/Oyerlock 10
30	Studying the organization of genes encoding plant cell wall degrading enzymes in <i><scp>C</scp>hrysomela tremula</i> provides insights into a leaf beetle genome. Insect Molecular Biology, 2014, 23, 286-300.	1.0	14
31	Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. Insect Biochemistry and Molecular Biology, 2014, 49, 1-13.	1.2	63
32	<i>Phyllotreta striolata</i> flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7349-7354.	3.3	116
33	Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. Insect Biochemistry and Molecular Biology, 2014, 52, 33-50.	1.2	116
34	Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis. Phytochemistry, 2014, 100, 43-50.	1.4	23
35	Cytochrome <scp>P</scp> 450â€encoding genes from the <i><scp>H</scp>eliconius</i> genome as candidates for cyanogenesis. Insect Molecular Biology, 2013, 22, 532-540.	1.0	15
36	<scp>C</scp> olorado potato beetle (<scp>C</scp> oleoptera) gut transcriptome analysis: expression of <scp>RNA</scp> interferenceâ€related genes. Insect Molecular Biology, 2013, 22, 668-684.	1.0	62

ΥΑΝΝΙCΚ ΡΑUCHET

#	Article	IF	CITATIONS
37	The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131021.	1.2	79
38	Microsatellites for the Marsh Fritillary Butterfly: De Novo Transcriptome Sequencing, and a Comparison with Amplified Fragment Length Polymorphism (AFLP) Markers. PLoS ONE, 2013, 8, e54721.	1.1	9
39	Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle. BMC Genomics, 2012, 13, 587.	1.2	65
40	Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487, 94-98.	13.7	1,086
41	Comparative proteomic analysis of <i>Helicoverpa armigera</i> cells undergoing apoptosis. Journal of Proteome Research, 2011, 10, 2633-2642.	1.8	8
42	Molecular characterization of three genes encoding aminopeptidases N in the poplar leaf beetle Chrysomela tremulae. Insect Molecular Biology, 2011, 20, 267-278.	1.0	1
43	A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genomics, 2011, 12, 357.	1.2	65
44	Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics, 2011, 12, 56.	1.2	97
45	Pyrosequencing the <i>Manduca sexta</i> larval midgut transcriptome: messages for digestion, detoxification and defence. Insect Molecular Biology, 2010, 19, 61-75.	1.0	148
46	An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin. PLoS Genetics, 2010, 6, e1001248.	1.5	312
47	The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 2010, 40, 58-63.	1.2	90
48	Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes. PLoS ONE, 2010, 5, e15635.	1.1	129
49	Immunity or Digestion. Journal of Biological Chemistry, 2009, 284, 2214-2224.	1.6	95
50	Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. Insect Biochemistry and Molecular Biology, 2009, 39, 403-413.	1.2	78
51	Chromatographic and electrophoretic resolution of proteins and protein complexes from the larval midgut microvilli of Manduca sexta. Insect Biochemistry and Molecular Biology, 2009, 39, 467-474.	1.2	21
52	Mapping the Larval Midgut Lumen Proteome of <i>Helicoverpa armigera</i> , a Generalist Herbivorous Insect. Journal of Proteome Research, 2008, 7, 1629-1639.	1.8	110
53	Biological Activity and Binding Site Characteristics of the PA1b Entomotoxin on Insects from Different Orders. Journal of Insect Science, 2007, 7, 1-10.	0.6	31
54	Transposon-mediated resistance to Bacillus sphaericus in a field-evolved population of Culex pipiens (Diptera: Culicidae). Cellular Microbiology, 2007, 9, 2022-2029.	1.1	67

#	Article	IF	CITATIONS
55	Effects of a mosquitocidal toxin on a mammalian epithelial cell line expressing its target receptor. Cellular Microbiology, 2005, 7, 1335-1344.	1.1	29
56	Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5830-5835	3.3	76

Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5830-5835.