Bernhard Jakoby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3793232/publications.pdf

Version: 2024-02-01

398 papers 4,119 citations

147566 31 h-index 50 g-index

408 all docs 408 docs citations

408 times ranked 2411 citing authors

#	Article	IF	Citations
1	Electromechanical resonators for sensing fluid density and viscosity—a review. Measurement Science and Technology, 2022, 33, 012001.	1.4	6
2	Numerical analysis of an infrared gas sensor utilizing an indium-tin-oxide-based plasmonic slot waveguide. Journal of Sensors and Sensor Systems, 2022, 11, 15-20.	0.6	1
3	Design of a dual electrochemical quartz crystal microbalance with dissipation monitoring. Journal of Sensors and Sensor Systems, 2022, 11, 21-28.	0.6	O
4	Automatic Design of Microfluidic Gradient Generators. IEEE Access, 2022, 10, 28155-28164.	2.6	7
5	Announcing the 2021 Measurement Science and Technology Outstanding Paper Awards. Measurement Science and Technology, 2022, 33, 070201.	1.4	1
6	Design of a Slab Tamm Plasmon Resonator Coupled to a Multistrip Array Waveguide for the Mid Infrared. Sensors, 2022, 22, 2968.	2.1	4
7	Mixed finite elements applied to acoustic wave problems in compressible viscous fluids under piezoelectric actuation. Acta Mechanica, 2022, 233, 1967-1986.	1.1	1
8	Design, Analysis, and Optimization of a Plasmonic Slot Waveguide for Mid-Infrared Gas Sensing. Nanomaterials, 2022, 12, 1732.	1.9	3
9	Localized sensing of bulk properties of oils. Materials Today: Proceedings, 2022, , .	0.9	0
10	Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters. Chemistry of Materials, 2022, 34, 7139-7149.	3.2	11
11	Efficient and Accurate Modeling of the Surface Deflection of Thin Layers on Composite Substrates with Applications to Piezoelectric Parameter Measurements. Micro, 2022, 2, 369-389.	0.9	O
12	Using Moving Electrode Impedance Spectroscopy to Monitor Particle Sedimentation. IEEE Sensors Journal, 2021, 21, 9636-9641.	2.4	5
13	A Microfluidic Viscometer With Capacitive Readout Using Screen-Printed Electrodes. IEEE Sensors Journal, 2021, 21, 2565-2572.	2.4	10
14	Design of a Curved Shape Photonic Crystal Taper for Highly Efficient Mode Coupling. Sensors, 2021, 21, 585.	2.1	4
15	Implementation of a Density Sensitive Structure in the Torsionally Oscillating Resonant Pipe Viscosity Sensor. IEEE Sensors Journal, 2021, 21, 14693-14700.	2.4	3
16	Aluminium, gold-tin and titanium-tungsten alloys for mid-infrared plasmonic gratings. Optical Materials Express, 2021, 11, 1058.	1.6	9
17	Designing Mid-Infrared Gold-Based Plasmonic Slot Waveguides for CO2-Sensing Applications. Sensors, 2021, 21, 2669.	2.1	9
18	Towards Integrated Plasmonic Gas Sensors in the MWIR. Engineering Proceedings, 2021, 6, .	0.4	0

#	Article	IF	Citations
19	Embedded Transducers in Polymeric Coatings on Metallic Substrates. IEEE Sensors Journal, 2021, 21, 12444-12456.	2.4	2
20	Optimizing Heater Electrode and Temperature Distributions on Large Scale Sheet Metal Heaters. , 2021, , .		1
21	Plasmonic Silver Grating for Mid-Infrared Sensing. , 2021, , .		1
22	Ultra-Narrow SPP Generation from Ag Grating. Sensors, 2021, 21, 6993.	2.1	4
23	Advanced fluid models for resonant online oil condition monitoring systems. TM Technisches Messen, 2021, .	0.3	0
24	Monitoring Zeolite Formation with Moving Electrode Conductometry., 2021,,.		0
25	Electroosmotic Pump Using a Glass Fiber Filter for High Flow Rate Water Transport. , 2021, , .		2
26	Higher-Order Models for Resonant Viscosity and Mass-Density Sensors. Sensors, 2020, 20, 4279.	2.1	7
27	Design and Analysis of a Slot Photonic Crystal Waveguide for Highly Sensitive Evanescent Field Absorption Sensing in Fluids. Micromachines, 2020, 11, 781.	1.4	5
28	Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators. Sensors, 2020, 20, 6804.	2.1	4
29	Moving Electrode Impedance Spectroscopy for Accurate Conductivity Measurements of Corrosive Ionic Media. ACS Sensors, 2020, 5, 3392-3397.	4.0	9
30	Announcing the 2019 Measurement Science and Technology Outstanding Paper Awards. Measurement Science and Technology, 2020, 31, 080101.	1.4	0
31	Screen Printed Sensor Design for Thermal Flow Velocity Measurement With Intrinsic Compensation of Thermal Fluid Conductivity. IEEE Sensors Journal, 2020, 20, 5698-5704.	2.4	4
32	An Alternative Path to Foster's Reactance Theorem and Its Relation to Narrow-Band Equivalent Circuits. IEEE Circuits and Systems Magazine, 2020, 20, 32-39.	2.6	0
33	A dielectric coating for improved performance of capacitive sensors in all-polymer microfluidic devices. Microelectronic Engineering, 2020, 223, 111220.	1.1	8
34	Embedded Temperature and Anti-Icing Monitoring Systems Directly Printed on 3D Shaped Substrates. IEEE Sensors Journal, 2020, 20, 5314-5321.	2.4	6
35	Embedded screen-printed transducers in bulk polymer microfluidic devices. Elektrotechnik Und Informationstechnik, 2020, 137, 128-134.	0.7	1
36	Parallel Droplet Deposition via a Superhydrophobic Plate with Integrated Heater and Temperature Sensors. Micromachines, 2020, 11, 354.	1.4	2

#	Article	IF	CITATIONS
37	A multi-parameter physical fluid sensor system for industrial and automotive applications. TM Technisches Messen, 2020, 87, 189-200.	0.3	2
38	Characterization of a Vertical-Cavity Enhanced Detector for Narrowband Detection in the Mid-Infrared. Proceedings (mdpi), 2019, 2, .	0.2	0
39	Design of a Mid-Infrared Bandpass Filter With Large Rejection Bandwidth for Silicon Photonics. Journal of Lightwave Technology, 2019, 37, 3770-3776.	2.7	3
40	A CMOS Compatible Pyroelectric Mid-Infrared Detector Based on Aluminium Nitride. Sensors, 2019, 19, 2513.	2.1	20
41	A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots. Applied Physics Letters, 2019, 115, .	1.5	6
42	Announcing the 2018 <i>Measurement Science and Technology</i> Outstanding Paper Awards. Measurement Science and Technology, 2019, 30, 120101.	1.4	0
43	Fluid Sensing Using Quartz Tuning Forks—Measurement Technology and Applications. Sensors, 2019, 19, 2336.	2.1	16
44	Drug dosage for microneedle-based transdermal drug delivery systems utilizing evaporation-induced droplet transport. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	14
45	Screen printed sensors fabricated on non-planar surfaces by water transfer print. Microelectronic Engineering, 2019, 209, 49-52.	1.1	8
46	Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States. Materials, 2019, 12, 929.	1.3	6
47	Balanced torsionally oscillating pipe used as a viscosity sensor. Measurement Science and Technology, 2019, 30, 015101.	1.4	7
48	Lab-scale prototyping of polymer based microfluidic devices using gallium as phase-changing sacrificial material. Microelectronic Engineering, 2019, 211, 50-54.	1.1	6
49	Screen-Printed, Pure Carbon-Black Thermocouple Fabrication and Seebeck Coefficients. Sensors, 2019, 19, 403.	2.1	15
50	Monitoring Particle Sedimentation in Conductive Suspensions with Moving Electrode Impedance Spectroscopy. , 2019, , .		1
51	Modeling of a CMOS-Compatible Slab Tamm Plasmon Absorber using N-Type Silicon. , 2019, , .		0
52	Using an optimized grating as a mid-IR surface plasmon gas sensor utilizing highly doped silicon. , 2019,		2
53	In-plane Tuning Fork Resonator for Shear-Wave Spectroscopy of Small Samples of Complex Liquids. , 2019, , .		0
54	An Inkjet Printed ZNO Based Gas Senor on a Flexible High Temperature Substrate for No ₂ Sensing., 2019,,.		1

#	Article	IF	CITATIONS
55	Simultaneous Microfluidic Flow Velocity and Thermal Conductivity Measurement Utilizing Screen Printed Thermal Sensors. , 2019, , .		1
56	Parallel Dosing Using a Superhydrophobic, Heated Plate by Evaporation Induced Droplet Transport. , 2019, , .		0
57	Thermal Condition Monitoring System Fully Printed on a 3D Substrate. , 2019, , .		1
58	Screen Printed Thermal Flow Velocity Sensor for Microfluidic Devices Featuring Intrinsic Compensation of Spurious Heat Transfe. , 2019, , .		0
59	The Oscillation Dynamics of Droplets Subject to Electrowetting Actuation. IEEE Sensors Journal, 2019, 19, 1379-1387.	2.4	10
60	Printed strain gauges embedded in organic coatings - Analysis of gauge factor and temperature dependence. Sensors and Actuators A: Physical, 2018, 276, 137-143.	2.0	16
61	Capacitive Contact Sensor on an Elastic Polymer Sheet. Proceedings (mdpi), 2018, 2, .	0.2	0
62	Sensitivity Comparison of Integrated Mid-Infrared Silicon-Based Photonic Detectors. Proceedings (mdpi), 2018, 2, 796.	0.2	0
63	Hybrid Photonic Crystal-Surface Plasmon Polariton Waveguiding System for On-Chip Sensing Applications. Proceedings (mdpi), 2018, 2, .	0.2	4
64	Narrow-Band Thermal Photonic Crystal Emitter for Mid-Infrared Applications. Proceedings (mdpi), 2018, 2, 752.	0.2	2
65	Numerical Investigations of Infrared Slot Waveguides for Gas Sensing. Proceedings (mdpi), 2018, 2, 799.	0.2	6
66	A Diffusor/Nozzle Pump Based on a Magnetically Actuated Flexible PCB Diaphragm. Proceedings (mdpi), 2018, 2, .	0.2	1
67	A Screen Printed Thermocouple-Array on a Flexible Substrate for Condition Monitoring. Proceedings (mdpi), 2018, 2, .	0.2	8
68	FEM Modeling and Capillary Wave Analysis of Electrowetting Induced Droplet Oscillations. , 2018, , .		2
69	Fully Screen Printed Carbon Black-Only Thermocouple and the Corresponding Seebeck Coefficients. Proceedings (mdpi), 2018, 2, 802.	0.2	2
70	Design and Numerical Evaluation of a Highly Selective CMOS-Compatible Mid-IR Thermal Emitter/Detector Structure Using Optical Tamm-States. Proceedings (mdpi), 2018, 2, 1032.	0.2	1
71	Fully Screen Printed Thermocouple and Microheater Applied for Time-of-Flight Sensing in Microchannels. IEEE Sensors Journal, 2018, 18, 8685-8692.	2.4	13
72	Determination of particle distributions from sedimentation measurements using a piezoelectric tuning fork sensor. Sensors and Actuators A: Physical, 2018, 284, 266-275.	2.0	6

#	Article	IF	Citations
73	Characterization of Evanescent Field Gas Sensor Structures Based on Silicon Photonics. IEEE Photonics Journal, 2018, 10, 1-14.	1.0	42
74	Embedded, Fully Spray-Coated Pressure Sensor Using a Capacitive Transducing Mechanism. Polymers, 2018, 10, 852.	2.0	8
75	Printed strain sensors in organic coatings: In depth analysis of sensor signal effects. Sensors and Actuators A: Physical, 2018, 281, 258-263.	2.0	7
76	Mid-infrared absorption gas sensing using a silicon strip waveguide. Sensors and Actuators A: Physical, 2018, 277, 117-123.	2.0	67
77	Highly sensitive fluid sensing due to slow light in pillar-based photonic crystal ring resonators. TM Technisches Messen, 2018, 85, 515-520.	0.3	O
78	Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sensors and Actuators B: Chemical, 2018, 274, 60-65.	4.0	30
79	Taming parasitic thermal emission by Tamm plasmon polaritons for the mid-infrared. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1490.	0.9	10
80	A Density and Viscosity Sensor Utilizing a Levitated Permanent Magnet. IEEE Sensors Journal, 2018, 18, 7786-7792.	2.4	2
81	Material screening for fully printed polymer-based thermocouples designed for use in harsh environments. Measurement Science and Technology, 2018, 29, 105104.	1.4	1
82	Printed transducers embedded in polymer coatings. Elektrotechnik Und Informationstechnik, 2018, 135, 401-407.	0.7	4
83	Announcing the 2017 Measurement Science and Technology Outstanding Paper Awards. Measurement Science and Technology, 2018, 29, 090102.	1.4	O
84	A fully spray processed embedded composite thermocouple for the use at high temperatures and harsh environments. Sensors and Actuators A: Physical, 2018, 279, 84-89.	2.0	11
85	Characterization of a Narrowband Resonant Cavity Enhanced Detector in the Mid-Infrared., 2018,,.		O
86	Photoacoustic scanning macroscopy with interferometric ultrasound detection based on a fiber-optic ring array. , 2018, , .		0
87	Screen printed and laminated electrodes for low-cost capacitive level measurement systems. Journal of Electrical Engineering, 2018, 69, 177-182.	0.4	5
88	Fiber-optic annular detector array for large depth of field photoacoustic macroscopy. Photoacoustics, 2017, 5, 1-9.	4.4	17
89	FEM-Simulation and Experimental Realization of Low-Cost Electrowetting Actuators for a Flexible Microfluidic Pixel. IEEE Sensors Journal, 2017, , 1-1.	2.4	2
90	Characterizing the geometrical tolerances of optimized vertical-cavity thermal emitter stack configurations for the mid-infrared via Monte Carlo testing. , 2017, , .		1

#	Article	IF	CITATIONS
91	Numerical and experimental analysis of an acoustic micropump utilizing a flexible printed circuit board as an actuator. Sensors and Actuators A: Physical, 2017, 260, 220-227.	2.0	10
92	Revisiting Silicalite-1 Nucleation in Clear Solution by Electrochemical Impedance Spectroscopy. Langmuir, 2017, 33, 2581-2589.	1.6	7
93	Sensitivity optimization of a photonic crystal ring resonator for gas sensing applications. Sensors and Actuators A: Physical, 2017, 264, 347-351.	2.0	16
94	Photonics in the Mid-Infrared: Challenges in Single-Chip Integration and Absorption Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 452-463.	1.9	57
95	Characterisation of a resonant-cavity enhanced thermal emitter for the mid-infrared., 2017,,.		3
96	Intrinsic damping in silicon slab waveguides in the mid-infrared., 2017,,.		0
97	Characterization of silver microheaters for vertical-cavity enhanced resonant thermal emission., 2017,,.		1
98	Modeling of acoustic streaming in viscoelastic fluids., 2017,,.		0
99	The dynamics of EWOD oscillations. , 2017, , .		1
100	Absorption Based Characterization Method for Fluid Properties Using Electrowetting-on-Dielectric Forces: Modeling and Fabrication. Proceedings (mdpi), 2017, 1, 332.	0.2	0
101	Monitoring of Monosodium Urate Crystallization for the Detection of Crystal Arthropathies in Human Joints. Proceedings (mdpi), 2017, 1 , .	0.2	2
102	Acoustic Streaming Actuator and Multifrequency Resonator Sensor. Proceedings (mdpi), 2017, 1, .	0.2	2
103	Photonic Gas Sensor Using a Silicon Strip Waveguide. Proceedings (mdpi), 2017, 1, 547.	0.2	2
104	Evanescent-Wave Gas Sensing Using an Integrated Thermal Light Source. Proceedings (mdpi), 2017, 1, 550.	0.2	2
105	A Spray Processed Polymer-Based High Temperature Organic/Metal Thermocouple for Embedding in Organic Coatings of Steel Substrates. Proceedings (mdpi), 2017, 1, .	0.2	2
106	Temperature Dependence of Gauge Factor of Printed Piezoresistive Layers Embedded in Organic Coatings. Proceedings (mdpi), 2017, 1, 618.	0.2	6
107	Hysteresis and Material Effects of Printed Strain Gauges Embedded in Organic Coatings. Proceedings (mdpi), 2017, 1, 624.	0.2	8
108	Efficient Vertical-Cavity Mid-IR Thermal Radiation to Silicon-Slab Waveguide Coupling Using a Shallow Blazed Grating. Proceedings (mdpi), 2017, 1, .	0.2	2

#	Article	IF	CITATIONS
109	Announcing the 2015 <i>Measurement Science and Technology</i> outstanding paper awards. Measurement Science and Technology, 2016, 27, 070101.	1.4	O
110	Modeling and fabrication of low-cost electrowetting actuators for flexible microfluidic display applications. , $2016, \ldots$		4
111	Monitoring of the Dilution of Motor Oil with Diesel Using an Advanced Resonant Sensor System. Procedia Engineering, 2016, 168, 15-18.	1.2	15
112	High-Quality-Factor Photonic Crystal Ring Resonator with Applications for Gas Sensing. Procedia Engineering, 2016, 168, 375-379.	1.2	8
113	Sensitivity Optimization of Microwave Biosensors. Procedia Engineering, 2016, 168, 634-637.	1.2	3
114	A Resonant Rolling Sphere Viscometer Using Magnetic Actuation and Readout. Procedia Engineering, 2016, 168, 670-674.	1.2	1
115	Acoustic Streaming via a Flexible PCB for Micropumping Applications. Procedia Engineering, 2016, 168, 856-859.	1.2	3
116	Fluid Impedance Model for Resonator Viscosity Sensors. Procedia Engineering, 2016, 168, 1012-1015.	1.2	3
117	Modeling of a Highly Optimizable Vertical-Cavity Thermal Emitter for the Mid-Infrared. Procedia Engineering, 2016, 168, 1214-1218.	1.2	7
118	Spectroscopic Gas Sensing Using a Silicon Slab Waveguide. Procedia Engineering, 2016, 168, 1265-1269.	1.2	12
119	Ball Viscometer Using Active Magnetic Levitation. Procedia Engineering, 2016, 168, 1525-1528.	1.2	0
120	Simple Synthetic Jet Actuators for Cooling Applications Using Soft or Rigid Magnets. Procedia Engineering, 2016, 168, 1541-1546.	1.2	4
121	Printed Strain Gauges Embedded in Organic Coatings. Procedia Engineering, 2016, 168, 822-825.	1.2	15
122	A photonic silicon waveguide gas sensor using evanescent-wave absorption. , 2016, , .		14
123	Low-Cost Silver Screen-Printed Electrowetting on Dielectrics Structure for Optofluidic Switches. Procedia Engineering, 2016, 168, 1061-1065.	1.2	2
124	On the origin and the calculation of the force in electrostatic actuators. European Journal of Physics, 2016, 37, 045207.	0.3	1
125	A Differential Pressure Wave-Based Sensor Setup for the Acoustic Viscosity of Liquids. IEEE Sensors Journal, 2016, 16, 7609-7619.	2.4	3
126	Investigation and Modeling of an Acoustoelectric Sensor Setup for the Determination of the Longitudinal Viscosity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 2187-2197.	1.7	7

#	Article	IF	CITATIONS
127	An advanced viscosity and density sensor based on diamagnetically stabilized levitation. Sensors and Actuators A: Physical, 2016, 248, 46-53.	2.0	15
128	M-line spectroscopy on mid-infrared Si photonic crystals for fluid sensing and chemical imaging. Optics Express, 2016, 24, 262.	1.7	10
129	Printed Embedded Transducers: Capacitive Touch Sensors Integrated Into the Organic Coating of Metalic Substrates. IEEE Sensors Journal, 2016, 16, 7101-7108.	2.4	15
130	Electric field driven extensional rheometry of synovial fluid., 2016,,.		0
131	Fast method for the calculation of surface bending on circular multilayered piezoelectric structures. , 2016, , .		1
132	Guest Editorial Special Issue on Selected Papers From the IEEE Sensors Conference 2014. IEEE Sensors Journal, 2016, 16, 3348-3348.	2.4	0
133	A low-cost viscosity sensor based on electrowetting on dielectrics (EWOD) forces. Sensors and Actuators A: Physical, 2016, 244, 261-269.	2.0	16
134	Characterization of Viscous and Viscoelastic Fluids Using Parallel Plate Shear-Wave Transducers. IEEE Sensors Journal, 2016, 16, 2950-2957.	2.4	6
135	Transparent, flexible, thin sensor surfaces for passive light-point localization based on two functional polymers. Sensors and Actuators A: Physical, 2016, 239, 70-78.	2.0	12
136	Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy. Chemical Communications, 2016, 52, 5478-5481.	2.2	7
137	Thermal Properties of a Thin-Film Membrane Embedded in a Multiparameter Wind Sensor—On-Device Characterization Utilizing a Transient Measurement Approach. IEEE Sensors Journal, 2016, 16, 3409-3418.	2.4	2
138	Ethanol fermentation bioreactor for microfluidic actuation. Sensors and Actuators A: Physical, 2016, 240, 145-152.	2.0	3
139	Active magnetic levitation and 3-D position measurement for a ball viscometer. Journal of Sensors and Sensor Systems, 2016, 5, 447-455.	0.6	2
140	Viscoelasticity and Dielectric Measurement of Small Sample Volume for Diagnostic Platform of Synovial Fluid. Procedia Engineering, 2015, 120, 171-174.	1.2	6
141	Resonator sensor array for synovial fluid characterization., 2015,,.		2
142	Pressure compensation behavior inside an EWOD oscillator. , 2015, , .		0
143	Ethanol Fermentation as the Basis for Autonomous, Long-term and High-pressure Fluid Transport in Microfluidics. Procedia Engineering, 2015, 120, 100-105.	1.2	3
144	Fluid Dynamics of an Electrowetting-on-dielectrics Tube Oscillator. Procedia Engineering, 2015, 120, 189-193.	1.2	1

#	Article	IF	CITATIONS
145	Microfluidic Device for Acoustophoresis and Dielectrophoresis Assisted Particle and Cell Transfer between Different Fluidic Media. Procedia Engineering, 2015, 120, 691-694.	1.2	5
146	Printed capacitive touch sensors embedded in organic coatings on sheet steel. , 2015, , .		1
147	Announcing the 2014Measurement Science and Technologyoutstanding paper awards. Measurement Science and Technology, 2015, 26, 070202.	1.4	0
148	Sensing Physical Fluid Properties in Microcavities Utilizing Diamagnetic Levitation. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	5
149	U-shaped wire based resonators for mass density and viscosity sensing. , 2015, , .		0
150	Separate experimental investigation of the influence of liquids' mass densities and viscosities on the frequency response of resonant sensors using designated liquid series. , 2015, , .		0
151	Acoustic sensor for in-line monitoring in polymer extrusion dies. , 2015, , .		1
152	Prototype for Single-cell Impedance Spectroscopy. Procedia Engineering, 2015, 120, 31-35.	1.2	0
153	Acoustic streaming driven by immersed resonator structures. , 2015, , .		2
154	Electrochemical impedance spectroscopy for in situ monitoring of early zeolite formation., 2015,,.		1
155	Understanding voltage induction in a short dipole antenna. European Journal of Physics, 2015, 36, 025009.	0.3	2
156	Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements. Sensors and Actuators A: Physical, 2015, 226, 163-174.	2.0	44
157	Electromagnetically driven torsional resonators for viscosity and mass density sensing applications. Sensors and Actuators A: Physical, 2015, 229, 182-191.	2.0	28
158	Symmetric mechanical plate resonators for fluid sensing. Sensors and Actuators A: Physical, 2015, 232, 319-328.	2.0	16
159	Microfluidic Pumping Utilizing a PDMS Membrane With an Integrated Nonuniform Open-Porous Foam. IEEE Sensors Journal, 2015, 15, 5109-5114.	2.4	5
160	A Viscosity and Density Sensor Based on Diamagnetically Stabilized Levitation. IEEE Sensors Journal, 2015, 15, 1937-1944.	2.4	12
161	Frequency Domain Based Measurement Method for the Thermal Parameters of a Thin-film Diaphragm Embedded in a MEMS Multi-parameter Wind Sensor. Procedia Engineering, 2014, 87, 632-635.	1.2	2
162	Concept study on an electrodynamically driven and read-out torsional oscillator. , 2014, , .		1

#	Article	IF	CITATIONS
163	Silicon photonics in the mid-infrared: Waveguide absorption sensors. , 2014, , .		5
164	Efficient numerical modeling of oscillatory fluid-structure interaction. , 2014, , .		6
165	PDMS membrane with integrated open-porous foam featuring a gradient in pore-size for simultaneous filtration and pumping of fluids in microfluidic structures. , 2014, , .		0
166	Parallel plates shear-wave transducers for the characterization of viscous and viscoelastic fluids. , 2014, , .		1
167	Investigation of higher mode excitation of resonant mass density and viscosity sensors. , 2014, , .		0
168	Transient measurement method for the thermal properties of the thin-film membrane in a multi-parameter wind sensor. , 2014, , .		1
169	Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures. Journal of Applied Physics, 2014, 115, 214105.	1.1	8
170	Ultrasonic piezoelectric tube resonator for physical liquid property sensing. , 2014, , .		1
171	Resonance parameter estimation from spectral data: Cramér–Rao lower bound and stable algorithms with application to liquid sensors. Measurement Science and Technology, 2014, 25, 105303.	1.4	9
172	Semi-numeric boundary element method for piezoelectric fluid sensors using a fourier spectral approach. , 2014, , .		2
173	Single-platform Si photonic components for mid-infrared sensing and chemical imaging. Proceedings of SPIE, 2014, , .	0.8	0
174	Symmetric Plate Resonators for Viscosity and Density Measurement. Procedia Engineering, 2014, 87, 36-39.	1.2	14
175	A Spiral Spring Resonator for Mass Density and Viscosity Measurements. Procedia Engineering, 2014, 87, 1143-1146.	1.2	4
176	Resonant Steel Tuning Forks for Precise Inline Viscosity and Mass Density Measurements in Harsh Environments. Procedia Engineering, 2014, 87, 1139-1142.	1.2	13
177	Introducing polarization and magnetization into Maxwell's equations: A modified approach. American Journal of Physics, 2014, 82, 47-51.	0.3	0
178	A broadband grating-coupled silicon nitride waveguide for the mid-IR: characterization and sensitive measurements using an external cavity quantum cascade laser. Applied Physics B: Lasers and Optics, 2014, 116, 325-332.	1.1	1
179	Development and Investigation of Thermal Devices on Fully Porous Silicon Substrates. IEEE Sensors Journal, 2014, 14, 992-997.	2.4	8
180	Highly insulating, fully porous silicon substrates for high temperature micro-hotplates. Sensors and Actuators A: Physical, 2014, 213, 35-42.	2.0	8

#	Article	IF	CITATIONS
181	Rigorous analytical analysis of resonant Euler-Bernoulli beams with constant thickness and polynomial width. , 2014, , .		2
182	Theoretical Analysis and Simulation Studies of the Orbiting Sphere Viscometer. IEEE Sensors Journal, 2014, 14, 3669-3676.	2.4	3
183	Reduced order models for resonant viscosity and mass density sensors. Sensors and Actuators A: Physical, 2014, 220, 76-84.	2.0	56
184	A U-shaped wire for viscosity and mass density sensing. Sensors and Actuators A: Physical, 2014, 214, 245-251.	2.0	18
185	An Electromagnetically Actuated Oscillating Sphere Used as a Viscosity Sensor. IEEE Sensors Journal, 2014, 14, 1914-1922.	2.4	6
186	Introduction of a general model for the resonance parameters of fluid sensors and validation with recent sensor setups. , 2014, , .		0
187	Impedance Spectroscopy for Silica Nanoparticle Detection in Caco-2 Cells. Procedia Engineering, 2014, 87, 364-368.	1.2	0
188	Modeling and Experimental Investigation of Resonant Viscosity and Mass Density Sensors Considering their Cross-Sensitivity to Temperature. Procedia Engineering, 2014, 87, 472-475.	1.2	7
189	Optimal Parameter Estimation Method for Different Types of Resonant Liquid Sensors. Procedia Engineering, 2014, 87, 1581-1584.	1.2	6
190	Validity of Describing Resonant Viscosity and Mass Density Sensors by Linear 2nd Order Resonators. Procedia Engineering, 2014, 87, 644-647.	1.2	6
191	Concept Studies of Torsional Resonators for Viscosity and Mass Density Sensing Applications. Procedia Engineering, 2014, 87, 1198-1201.	1.2	0
192	A Magnetic Membrane Actuator in Composite Technology Utilizing Diamagnetic Levitation. IEEE Sensors Journal, 2013, 13, 2786-2791.	2.4	22
193	A comparison of the electromechanical characteristics of dielectric elastomer minimum energy structures (DEMES) and planar dielectric elastomer actuators (p-DEAs)., 2013,,.		2
194	Modeling of piezoelectric tube resonators for liquid sensing applications. , 2013, , .		2
195	Modeling of large-area sensors with resistive electrodes for passive stimulus-localization. Sensors and Actuators A: Physical, 2013, 202, 37-43.	2.0	5
196	An acoustic transmission sensor for the longitudinal viscosity of fluids. Sensors and Actuators A: Physical, 2013, 202, 23-29.	2.0	14
197	A simple mid-infrared measurement system based on a tunable filter for the analysis of ternary gas mixtures. Measurement Science and Technology, 2013, 24, 084006.	1.4	3
198	Measurement error estimation and quality factor improvement of an electrodynamic-acoustic resonator sensor for viscosity measurement. Sensors and Actuators A: Physical, 2013, 199, 318-324.	2.0	19

#	Article	IF	Citations
199	Derivation of reduced order models from complex flow fields determined by semi-numeric spectral domain models. Sensors and Actuators A: Physical, 2013, 202, 44-51.	2.0	6
200	Magnetic circuits based on polymer composites for controlled actuation of a ferromagnetic sphere at a microfluidic junction. , 2013 , , .		1
201	Droplet mixing and liquid property tracking using an electrodynamic plate resonator. , 2013, , .		9
202	Experimental and theoretical evaluation of the achievable accuracies of resonating viscosity and mass density sensors. , 2013 , , .		4
203	Modeling approaches for electrodynamically driven viscosity and mass density sensors operated in the kHz range and experimental verifications. , 2013 , , .		0
204	Comparison and experimental validation of two potential resonant viscosity sensors in the kilohertz range. Measurement Science and Technology, 2013, 24, 084005.	1.4	8
205	Mid-infrared rib waveguide absorption sensors based on Si. , 2013, , .		0
206	Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification. Biomedical Optics Express, 2013, 4, 2322.	1.5	72
207	Light curtain for 2D large-area object detection. Optics Express, 2013, 21, 12757.	1.7	4
208	Mechatronics 2012. Measurement Science and Technology, 2013, 24, 080301.	1.4	0
209	Bidirectional micromachined flow sensor featuring a hot film made of amorphous germanium. Measurement Science and Technology, 2013, 24, 084002.	1.4	3
210	U-shaped, wire-based oscillators for rheological applications bridging the gap between 100 Hz and 100 kHz., 2013,,.		0
211	Characterization and calibration of U-shaped mass density and viscosity sensors by an analytical modeling approach., 2013,,.		1
212	Resonant pressure wave setup for simultaneous sensing of longitudinal viscosity and sound velocity of liquids. Measurement Science and Technology, 2013, 24, 125101.	1.4	31
213	High temperature micro-hotplates on porous silicon substrates. , 2013, , .		5
214	Linking the momentum of the electromagnetic field to the associated photons. European Journal of Physics, 2013, 34, 1575-1579.	0.3	1
215	Driving modes and material stability of a double membrane rheometer and density sensor. Journal of Sensors and Sensor Systems, 2013, 2, 19-26.	0.6	5
216	An electro wetting on dielectrics - system utilizing two different dielectric layers. Houille Blanche, 2013, 99, 57-63.	0.3	0

#	Article	IF	CITATIONS
217	Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices. Measurement Science and Technology, 2012, 23, 085107.	1.4	47
218	Viscosity measurement cell utilizing electrodynamic-acoustic resonator sensors: Issues and improvements. , 2012, , .		1
219	Utilizing the transient response of an acoustic transmission setup utilizing pressure waves to determine physical liquid parameters. , 2012, , .		6
220	Reactance-locked loop for driving resonant sensors. , 2012, , .		4
221	Modeling and data analysis of a multimode resonator sensor loaded with viscous and viscoelastic fluids. , 2012, , .		4
222	Application of resonant sensors for magnetic flux density measurements., 2012,,.		1
223	Miniaturized viscosity and mass density sensors combined in a measuring cell for handheld applications. , 2012, , .		3
224	Extended model for pressure wave fluid characterization setup including diffraction effects., 2012,,.		0
225	Position-dependent characterization of bone tissue with electrical impedance spectroscopy. , 2012, , .		5
226	A magnetic membrane actuator utilizing diamagnetic levitation. , 2012, , .		3
227	Viscosity Measurement Cell Utilizing Electrodynamic-Acoustic Resonator Sensors: Design Considerations and Issues. Procedia Engineering, 2012, 47, 160-164.	1.2	3
228	Evaluating the Robustness of an Algorithm Determining Key Parameters of Resonant Sensors. Procedia Engineering, 2012, 47, 330-333.	1.2	3
229	Monitoring of Gas Mixtures by Means of a Flexible IR-Sensor System Utilizing Tunable Filters. Procedia Engineering, 2012, 47, 285-288.	1.2	0
230	Feasibility of Miniaturized Viscosity Sensors for the Characterization of Suspensions. Procedia Engineering, 2012, 47, 924-928.	1.2	0
231	A Flexible Polymer Sensor for Light Point Localization. Procedia Engineering, 2012, 47, 795-800.	1.2	6
232	Measuring CO2 concentration with a Fabry–Perot based bolometer using a glass plate as simple infrared filter. Sensors and Actuators B: Chemical, 2012, 170, 143-147.	4.0	8
233	Controlled Liquid Flow in a Microfluidic Network with Pressure Sensitive Valves based on Polydimethylsiloxane (PDMS)/Neodymium (NdFeB) Composites. Procedia Engineering, 2012, 47, 382-385.	1.2	6
234	Complete Semi-Numeric Model of a Double Membrane Liquid Sensor for Density and Viscosity Measurements. Procedia Engineering, 2012, 47, 598-602.	1.2	1

#	Article	IF	Citations
235	An Acoustic Transmission Sensor for the Characterization of Fluids in Terms of Their Longitudinal Viscosity. Procedia Engineering, 2012, 47, 248-252.	1.2	6
236	Resonance characteristics of different operation modes of an orbiting sphere viscometer. , 2012, , .		0
237	Dynamic capacitive extensometry setup for in-situ monitoring of dielectric elastomer actuators. , 2012, , .		5
238	Properties of thermal devices and sensors on porous silicon substrates. , 2012, , .		2
239	Efficient spectral domain formulation of loading effects in acoustic sensors. Sensors and Actuators A: Physical, 2012, 186, 38-47.	2.0	12
240	Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves. Sensors and Actuators A: Physical, 2012, 186, 94-99.	2.0	22
241	Tunable resonators in the low kHz range for viscosity sensing. Sensors and Actuators A: Physical, 2012, 186, 111-117.	2.0	37
242	Localized Microwave Heating in Microwells for Use as Microreactors in Mobile Lab-on-a-Chip Developments. Experimental Heat Transfer, 2012, 25, 197-205.	2.3	1
243	The Effect of Temperature on Resonant Viscosity Sensors. Procedia Engineering, 2012, 47, 786-790.	1.2	4
244	Sensing viscosity and density of glycerol–water mixtures utilizing a suspended plate MEMS resonator. Microsystem Technologies, 2012, 18, 1045-1056.	1.2	37
245	Integration of impedance spectroscopy sensors in a digital microfluidic platform. Microsystem Technologies, 2012, 18, 1163-1180.	1.2	90
246	Microsensors Based on Mechanically Vibrating Structures. , 2012, , 183-193.		3
247	On the Modelling of Resonating Fluid Sensors. Lecture Notes in Computer Science, 2012, , 25-32.	1.0	0
248	Physical Sensors for Liquid Properties. IEEE Sensors Journal, 2011, 11, 3076-3085.	2.4	64
249	Tunable miniaturized viscosity sensors operating in the kHz-range., 2011,,.		O
250	Thermal wave propagation and reflection modeling in porous silicon membranes., 2011,,.		1
251	An efficient method for modeling planar interdigitated electrodes for capacitive sensing. , 2011, , .		1
252	Driving Modes and Material Stability of a Vibrating Polyethylene Membrane Viscosity Sensor. Procedia Engineering, 2011, 25, 176-179.	1.2	4

#	Article	IF	CITATIONS
253	A numerically efficient method of modeling interdigitated electrodes for capacitive film sensing. Procedia Engineering, 2011, 25, 431-434.	1.2	6
254	A Refined Modeling for the Liquid Loading Effect in Microacoustic Sensors. Procedia Engineering, 2011, 25, 435-438.	1.2	0
255	Viscoelasticity Sensor with Resonance Tuning and Low-Cost Interface. Procedia Engineering, 2011, 25, 623-626.	1.2	8
256	Miniaturized Resonating Viscometers Facilitating Measurements at Tunable Frequencies in the Low kHz-Range. Procedia Engineering, 2011, 25, 639-642.	1.2	4
257	Liquid condition monitoring using physical sensors. Procedia Engineering, 2011, 25, 657-664.	1.2	5
258	Utilizing acoustic pressure waves for sensing fluid properties. Procedia Engineering, 2011, 25, 775-778.	1.2	4
259	Impedance Spectroscopy of a Human Hepatic 3D Cell Model in-Vitro: A Comparative Study with Differently Shaped Electrodes. Procedia Engineering, 2011, 25, 1000-1003.	1.2	2
260	Simultaneous measurement of density and viscosity in gases with a quartz tuning fork resonator by tracking of the series resonance frequency. Procedia Engineering, 2011, 25, 1297-1300.	1.2	14
261	On the Robust Measurement of Resonant Frequency and Quality Factor of Damped Resonating Sensors. Procedia Engineering, 2011, 25, 1537-1540.	1.2	6
262	Viscosity and density measurements of glycerol-water mixtures utilizing a novel resonant MEMS sensor. , 2011, , .		1
263	A study on tunable resonators for rheological measurements. , 2011, , .		5
264	Fabry-PÃ f ©rot-based thin film structure used as IR-emitter of an NDIR gas sensor: ray tracing simulations and measurements. Proceedings of SPIE, 2011, , .	0.8	4
265	Impedance spectroscopy on a digital microfluidic platform. , 2011, , .		0
266	Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil. Vibrational Spectroscopy, 2011, 56, 129-135.	1.2	17
267	Miniature density–viscosity measurement cell utilizing electrodynamic-acoustic resonator sensors. Sensors and Actuators A: Physical, 2011, 172, 75-81.	2.0	32
268	A digital PLL circuit for resonator sensors. Sensors and Actuators A: Physical, 2011, 172, 69-74.	2.0	19
269	A resonating rheometer using two polymer membranes for measuring liquid viscosity and mass density. Sensors and Actuators A: Physical, 2011, 172, 82-87.	2.0	28
270	Modeling of an LFE piezoelectric fluid sensor as layered structure in the spectral domain. Sensors and Actuators A: Physical, 2011, 172, 129-134.	2.0	2

#	Article	IF	CITATIONS
271	Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform. Sensors and Actuators A: Physical, 2011, 172, 161-168.	2.0	21
272	Spectral Resolution of the Grating Coupler of a Miniaturized Integrated Evanescent Field IR Absorption Sensor. IEEE Journal of Quantum Electronics, 2011, 47, 950-958.	1.0	9
273	CO2 monitoring using a simple Fabry–Perot-based germanium bolometer. Sensors and Actuators B: Chemical, 2011, 154, 245-250.	4.0	9
274	The relation of Tellegen's theorem to the continuous field equations revisited. International Journal of Circuit Theory and Applications, 2011, 39, 411-415.	1.3	1
275	A liquid properties sensor utilizing pressure waves. , 2011, , .		7
276	A novel measurement method for the thermal properties of liquids by utilizing a bridge-based micromachined sensor. Measurement Science and Technology, 2011, 22, 105407.	1.4	19
277	A viscosity sensor utilizing an electromagnetically actuated oscillating sphere. , 2011, , .		4
278	Density sensitive driving mode of a double membrane viscometer. , 2011, , .		3
279	Analog compensation of parasitic sensor signals in a subsampling impedance analyzer circuit for resonating sensors. Procedia Engineering, 2010, 5, 57-61.	1.2	4
280	Real-time monitoring of a high pressure reactor using a gas density sensor. Sensors and Actuators A: Physical, 2010, 162, 215-219.	2.0	14
281	Modeling of a piezoelectric fluid sensor excited by lateral fields using a spectral domain approach. Procedia Engineering, 2010, 5, 82-86.	1.2	4
282	Digital phase-locked loop circuit for driving resonant sensors. Procedia Engineering, 2010, 5, 204-207.	1.2	7
283	An electrowetting on dielectrics based lab-on-a-chip utilizing an integrated high fundamental frequency quartz crystal resonator as a biosensor. Procedia Engineering, 2010, 5, 959-964.	1.2	2
284	Improvement of an evanescent field IR-absorption sensor by utilizing a photonic taper structure. Procedia Engineering, 2010, 5, 1013-1016.	1.2	1
285	Gas monitoring with a Fabry–Perot based bolometer: Cross-sensitivity to water vapor. Procedia Engineering, 2010, 5, 1220-1223.	1.2	4
286	Shear wave sensors for viscoelastic properties. Procedia Engineering, 2010, 5, 1316-1319.	1.2	2
287	Miniature flow-through resonator cell for density and viscosity sensing. Procedia Engineering, 2010, 5, 1413-1417.	1,2	2
288	A double membrane sensor for liquid viscosity facilitating measurements in a large frequency range. Procedia Engineering, 2010, 5, 1458-1461.	1.2	4

#	Article	IF	Citations
289	Characterization of a novel membrane-rheometer utilizing a semi-numerical modelling approach in the spectral domain. Sensors and Actuators A: Physical, 2010, 162, 310-315.	2.0	11
290	Analysis and experimental verification of a metallic suspended plate resonator for viscosity sensing. Sensors and Actuators A: Physical, 2010, 162, 418-424.	2.0	62
291	A full-wave model of a piezo-electric fluid sensor using lateral field excitation. , 2010, , .		2
292	Double membrane sensors for liquid viscosity and mass density facilitating measurements in a large frequency range. , 2010, , .		3
293	Smart analog compensation of spurious signals for a fully differential interface for resonating sensors. , 2010, , .		1
294	Modeling of Infrared Gas Sensors Using a Ray Tracing Approach. IEEE Sensors Journal, 2010, 10, 1691-1698.	2.4	27
295	Ein pr \tilde{A} giser Impedanzanalysator f \tilde{A}^{1} /4r resonante SensorenA Precise Impedance Analyser for Resonating Sensors. TM Technisches Messen, 2010, 77, 101-106.	0.3	0
296	Design of an NDIR gas sensor with two non-symmetric Fabry-Perot absorber-structures working as IR-emitter and IR-detector. , 2010, , .		3
297	Miniaturized sensors for the viscosity and density of liquids-performance and issues. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 111-120.	1.7	121
298	A semi-numerical model of a lateral field excited piezoelectric fluid sensor. , 2010, , .		2
299	Electromagnetic-acoustic high-Q silicon resonators for liquid phase sensing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1000-1002.	1.7	3
300	Convective flows in 3-dimensional microfluidic networks induced by localized microwave heating. , 2010, , .		0
301	Determining Liquid Properties Using Mechanically Vibrating Sensors. , 2010, , 95-104.		2
302	Simultaneous pumping and density-selective particle focusing using AC-driven electro-osmotic micropumps. , 2009, , .		1
303	Fluidic sensors based on vibrating miniaturized devices. , 2009, , .		2
304	Electromagnetic membrane-pump with an integrated magnetic yoke. , 2009, , .		0
305	Utilizing electromagnetic-acoustic resonators for liquid level sensing. , 2009, , .		0
306	A micromachined suspended plate viscosity sensor featuring in-plane vibrations and integrated piezoresistive readout., 2009,,.		3

#	Article	IF	CITATIONS
307	Non-contact liquid level measurement with electromagnetic–acoustic resonator sensors. Measurement Science and Technology, 2009, 20, 124002.	1.4	32
308	A suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout. Journal of Micromechanics and Microengineering, 2009, 19, 075010.	1.5	57
309	Estimation of vibration amplitudes for resonating sensors immersed in liquids. Measurement Science and Technology, 2009, 20, 124003.	1.4	4
310	Principle of a non-contact liquid level sensor using electromagnetic-acoustic resonators. Elektrotechnik Und Informationstechnik, 2009, 126, 3-7.	0.7	8
311	Fast thermo-pneumatic actuation of a thin PDMS membrane using a micro Peltier-element for microfluidic applications. Elektrotechnik Und Informationstechnik, 2009, 126, 70-74.	0.7	4
312	Condition monitoring of viscous liquids using microsensors. Elektrotechnik Und Informationstechnik, 2009, 126, 164-172.	0.7	0
313	Particle separation in alternating-current electro-osmotic micropumps using field-flow fractionation. Microfluidics and Nanofluidics, 2009, 7, 191-203.	1.0	7
314	A Novel Oscillating Shear Viscosity Sensor for Complex Liquids. Procedia Chemistry, 2009, 1, 895-898.	0.7	3
315	Improving the Precision of a Compact Subsampling Impedance Analyzer for Resonating Sensors. Procedia Chemistry, 2009, 1, 1335-1338.	0.7	3
316	Modeling of the fluid-structure interaction in a fluidic sensor cell. Sensors and Actuators A: Physical, 2009, 156, 222-228.	2.0	21
317	Density-dependent particle separation in microchannels using 3D AC-driven electro-osmotic pumps. Sensors and Actuators A: Physical, 2009, 156, 115-120.	2.0	10
318	Yet another precision impedance analyzer (YAPIA)—Readout electronics for resonating sensors. Sensors and Actuators A: Physical, 2009, 156, 245-250.	2.0	27
319	An efficient semi-numeric model for a novel miniaturized membrane-rheometer. Procedia Chemistry, 2009, 1, 92-95.	0.7	2
320	Gas density sensor for real-time monitoring in a high pressure reactor. Procedia Chemistry, 2009, 1, 108-111.	0.7	3
321	A Simple Fabry-Perot-Based Germanium Bolometer for CO2 Monitoring: Simulation and Measurement. Procedia Chemistry, 2009, 1, 1375-1378.	0.7	1
322	Sensing Viscosity and Density with a Micromachined Suspended Plate Resonator. Procedia Chemistry, 2009, 1, 1467-1470.	0.7	6
323	The relation between relaxation time, mean free path, collision time and drift velocity—pitfalls and a proposal for an approach illustrating the essentials. European Journal of Physics, 2009, 30, 1-12.	0.3	7
324	Viscosity sensing in heated alkaline zeolite synthesis media. Physical Chemistry Chemical Physics, 2009, 11, 2854-2857.	1.3	22

#	Article	IF	CITATIONS
325	Electromagnetically Actuated Membrane-Based Micropumps with Integrated Magnetic Yoke. Journal of Microelectronics and Electronic Packaging, 2009, 6, 205-210.	0.8	O
326	A vibrating membrane rheometer utilizing electromagnetic excitation. Sensors and Actuators A: Physical, 2008, 145-146, 349-353.	2.0	25
327	A concept of an infrared sensor system for oil condition monitoring. Elektrotechnik Und Informationstechnik, 2008, 125, 71-75.	0.7	21
328	Towards an integrated IR-absorption microsensor for the online monitoring of fluids. Elektrotechnik Und Informationstechnik, 2008, 125, 65-70.	0.7	1
329	Novel magnetic–acoustic resonator sensors for remote liquid phase measurement and mass detection. Sensors and Actuators A: Physical, 2008, 145-146, 44-51.	2.0	33
330	Modeling of a clamped–clamped beam vibrating in a fluid for viscosity and density sensing regarding compressibility. Sensors and Actuators A: Physical, 2008, 143, 293-301.	2.0	42
331	Droplet and particle manipulation in emulsions and suspensions using 3D electro-osmotic micropumps. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1
332	Particle manipulation using 3D ac electro-osmotic micropumps. Journal of Micromechanics and Microengineering, 2008, 18, 064016.	1.5	12
333	Frequency response of a micromachined doubly-clamped vibrating beam for the measurement of liquid properties. , 2008, , .		1
334	Remote electromagnetic excitation of miniaturized in-plane plate resonators for sensing applications. , 2008, , .		2
335	Messung physikalischer Flýssigkeitseigenschaften mit beidseitig eingespannten Balkenstrukturen (Measurement of Liquid Properties Using a Vibrating Clamped–Clamped Beam Structure). TM Technisches Messen, 2008, 75, 84-90.	0.3	0
336	Efficient semi-numerical analysis of acoustic sensors using spectral domain methods—a review. Measurement Science and Technology, 2008, 19, 052001.	1.4	16
337	A micromachined doubly-clamped beam rheometer for the measurement of viscosity and concentration of silicon-dioxide-in-water suspensions. , 2008, , .		22
338	Wavelength selectivity of a thermal IR-absorber as part of a fully integrated IR-absorption sensor. , 2008, , .		2
339	Dielectrophoretic particle dynamics in alternating-current electro-osmotic micropumps. Applied Physics Letters, 2008, 92, 184101.	1.5	10
340	Thermal property determination of laminar-flowing fluids utilizing the frequency response of a calorimetric flow sensor. , 2008, , .		15
341	Multi-mode excitation of electromagnetic-acoustic resonant sensor arrays. , 2008, , .		3
342	Design of multilayered grating couplers as key elements of a fully integrated IR-absorption sensor. , 2008, , .		0

#	Article	IF	Citations
343	Thermische Kopplungseigenschaften eines Gitterkopplers als zentrales Element eines IR-AbsorptionssensorsGrating-Couplers for Thermal Radiation as an Essential Element of a Fully Integrated IR-Absorption Sensor System. TM Technisches Messen, 2008, 75, 655-661.	0.3	1
344	Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing. Journal of Sensors, 2008, 2008, 1-9.	0.6	85
345	5D-5 Electromagnetic Excitation of High-Q Silicon Face Shear Mode Resonator Sensors. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	1
346	Novel Magnetic-Acoustic Face Shear Mode Resonators for Liquid Property Sensing., 2007,,.		4
347	Design of a Novel Fully Integrated IR - Absorption Sensor System. , 2007, , .		4
348	A Novel Miniaturized Electromagnetically Excited Vibrating Membrane Rheometer., 2007,,.		0
349	A Novel Combined Rheometer and Density Meter Suitable for Integration in Microfluidic Systems. , 2007, , .		10
350	A Novel Sensor System for Liquid Properties Based on a Micromachined Beam and a Low-Cost Optical Readout., 2007,,.		11
351	A Novel Characterization Method for Thermal Thin-Film Properties Applied to PECVD Silicon Nitride., 2007, , .		4
352	Novel Readout Electronics for Thickness Shear-Mode Liquid Sensors Compensating for Spurious Conductivity and Capacitances. IEEE Sensors Journal, 2007, 7, 464-469.	2.4	21
353	Corrosion sensors for engine oils—laboratory evaluation and field tests. Sensors and Actuators B: Chemical, 2007, 127, 15-21.	4.0	11
354	Online Application of Sensors Monitoring Lubricating Oil Properties in Biogas Engines. , 2006, , .		3
355	Characterizing Resonating Cantilevers for Liquid Property Sensing. , 2006, , .		8
356	Remote Electromagnetic Excitation of High-Q Silicon Resonator Sensors. , 2006, , .		5
357	Highly Sensitive Sensor for Flow Velocity and Flow Direction Measurement. , 2006, , .		9
358	Simultaneous thermal conductivity and diffusivity sensing in liquids using a micromachined device. Sensors and Actuators A: Physical, 2006, 130-131, 62-67.	2.0	53
359	Determining Thermal Properties of Liquids: Membrane-based versus Bridge-based Micromachined Sensors., 2006,,.		3
360	3K-4 Acoustic Wave Generation and Detection in Non-Piezoelectric High-Q Resonators. , 2006, , .		3

#	Article	IF	CITATIONS
361	Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids. Sensors and Actuators A: Physical, 2005, 123-124, 82-86.	2.0	82
362	Viscosity sensors for engine oil condition monitoring—Application and interpretation of results. Sensors and Actuators A: Physical, 2005, 121, 327-332.	2.0	160
363	Sensing the thermal conductivity of deteriorated mineral oils using a hot-film microsensor. Sensors and Actuators A: Physical, 2005, 123-124, 397-402.	2.0	5
364	A novel microacoustic viscosity sensor providing integrated sample temperature control. Sensors and Actuators A: Physical, 2005, 123-124, 274-280.	2.0	18
365	Characterizing the rheological behavior of oil-based liquids: microacoustic sensors versus rotational viscometers. IEEE Sensors Journal, 2005, 5, 850-856.	2.4	11
366	Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE Sensors Journal, 2005, 5, 1106-1111.	2.4	27
367	A two-dimensional analysis of spurious compressional wave excitation by thickness-shear-mode resonators. Journal of Applied Physics, 2004, 95, 4989-4995.	1.1	37
368	Physical sensors for water-in-oil emulsions. Sensors and Actuators A: Physical, 2004, 110, 28-32.	2.0	66
369	Monitoring macro- and microemulsions using physical chemosensors. Sensors and Actuators A: Physical, 2004, 115, 209-214.	2.0	43
370	Development trends in the field of sensors. Elektrotechnik Und Informationstechnik, 2003, 120, 388-394.	0.7	4
371	An automotive engine oil viscosity sensor. IEEE Sensors Journal, 2003, 3, 562-568.	2.4	102
372	The potential of microacoustic SAW- and BAW-based sensors for automotive applications - a review. IEEE Sensors Journal, 2002, 2, 443-452.	2.4	24
373	Microacoustic Sensors for Liquid Monitoring. Sensors Update, 2001, 9, 105-160.	0.5	28
374	Temperature-compensated Love-wave sensors on quartz substrates. Sensors and Actuators A: Physical, 2000, 82, 83-88.	2.0	21
375	Substrates for zero temperature coefficient Love wave sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 701-705.	1.7	1
376	Analysis of viscous losses in the chemical interface layer of Love wave sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 696-700.	1.7	1
377	A novel molecularly imprinted thin film applied to a Love wave gas sensor. Sensors and Actuators A: Physical, 1999, 76, 93-97.	2.0	43
378	Viscosity sensing using a Love-wave device. Sensors and Actuators A: Physical, 1998, 68, 275-281.	2.0	130

#	Article	IF	CITATIONS
379	Wafer-to-wafer fusion bonding of oxidized silicon to silicon at low temperatures. Sensors and Actuators A: Physical, 1998, 68, 410-413.	2.0	39
380	Analysis and optimization of Love wave liquid sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1293-1302.	1.7	51
381	<title>Integral design of a microacoustic wave-based sensor device</title> ., 1998,,.		1
382	<title>Micromachined wet cell for a Love-wave liquid sensor</title> ., 1998, 3328, 194.		2
383	<title>Performance optimization of a Love wave device for biosensing</title> ., 1998,,.		0
384	Scattering of obliquely incident waves by an impedance cylinder with inhomogeneous bianisotropic coating. IEEE Transactions on Antennas and Propagation, 1997, 45, 648-655.	3.1	15
385	Properties of Love waves: applications in sensors. Smart Materials and Structures, 1997, 6, 668-679.	1.8	201
386	Analysis of bianisotropic layered structures with laterally periodic inhomogeneities-an eigenoperator formulation. IEEE Transactions on Antennas and Propagation, 1996, 44, 615.	3.1	12
387	Asymptotic expansions for Green's dyadics in bianisotropic media (Summary). Journal of Electromagnetic Waves and Applications, 1996, 10, 93-96.	1.0	7
388	Analysis of guided waves in inhomogeneous bianisotropic cylindrical waveguides. IEEE Transactions on Microwave Theory and Techniques, 1996, 44, 297-310.	2.9	6
389	TE-TM source decomposition for general uniaxial bianisotropic media. Microwave and Optical Technology Letters, 1995, 9, 345-349.	0.9	4
390	Singularity in Green dyadics for uniaxial bianisotropic media. Electronics Letters, 1995, 31, 779-781.	0.5	7
391	Real space Green's function for stacked structures consisting of bianisotropic materials. , 1993, , .		0
392	On the Transformation of the Maxwell Equations for Inhomogeneous and Anisotropic Media into a Numerically Stable Eigenproblem and its Applications. , 1992, , .		2
393	A Novel Sensor Monitoring Corrosion Effects of Lubrication Oil in an Integrating Manner. , 0, , .		10
394	Fully Three-Dimensional Analysis of TSM Quartz Sensors Immersed in Viscous Liquids. , 0, , .		10
395	Analysis of Spurious Effects in Membrane-Based Micromachined Thermal Conductivity Sensors., 0,,.		1
396	Fluidic Physical Sensors and Sensor Systems. Advances in Science and Technology, 0, , .	0.2	0

#	Article	IF	CITATIONS
397	Optimized design of quartz disc viscosity sensors for the application in harsh chemical environments. , 0, , .		5
398	Electromagnetically excited resonator sensors for remote mass detection and liquid phase sensing. , 0, , .		0