
Immaculada MartÃ-nez-Rovira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3793115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers. International Journal of Molecular Sciences, 2022, 23, 1282.	1.8	7
2	Live-Cell Synchrotron-Based FTIR Evaluation of Metabolic Compounds in Brain Glioblastoma Cell Lines after Riluzole Treatment. Analytical Chemistry, 2022, 94, 1932-1940.	3.2	10
3	Breaking photoswitch activation depth limit using ionising radiation stimuli adapted to clinical application. Nature Communications, 2022, 13, .	5.8	2
4	Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage. Journal of Materials Chemistry A, 2021, 9, 1192-1206.	5.2	6
5	Out-of-field doses for scanning proton radiotherapy of shallowly located paediatric tumours—a comparison of range shifter and 3D printed compensator. Physics in Medicine and Biology, 2021, 66, 035012.	1.6	13
6	Infrared microspectroscopy studies on the protective effect of curcumin coated gold nanoparticles against H ₂ O ₂ -induced oxidative stress in human neuroblastoma SK-N-SH cells. Analyst, The, 2021, 146, 6902-6916.	1.7	4
7	A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy. Cancers, 2021, 13, 1356.	1.7	9
8	Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging, 2021, 13, 12308-12333.	1.4	11
9	Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9937.	1.8	9
10	Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst, The, 2020, 145, 2345-2356.	1.7	9
11	Synchrotron-based infrared microspectroscopy study on the radiosensitization effects of Gd nanoparticles at megavoltage radiation energies. Analyst, The, 2019, 144, 5511-5520.	1.7	7
12	Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping. Physical Chemistry Chemical Physics, 2019, 21, 25175-25186.	1.3	12
13	A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines. Analyst, The, 2019, 144, 6352-6364.	1.7	6
14	COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY—A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS. Radiation Protection Dosimetry, 2018, 180, 256-260.	0.4	16
15	Calibration of a Poly Allyl Diglycol Carbonate (PADC) based track-etched dosimeter in thermal neutron fields. Radiation Measurements, 2018, 119, 204-208.	0.7	2
16	Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation. Medical Physics, 2017, 44, 4223-4229.	1.6	15
17	Characterization of equipment for shaping and imaging hadron minibeams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 872, 119-125.	0.7	2
18	Dose evaluation of Grid Therapy using a 6 MV flattening filterâ€free (FFF) photon beam: A Monte Carlo study. Medical Physics. 2017. 44. 5378-5383.	1.6	6

#	Article	IF	CITATIONS
19	Experimental Approach to Evaluate the 11C Perfusion and Diffusion in Small Animal Tissues for HadronPET Applications. PLoS ONE, 2016, 11, e0151212.	1.1	1
20	FTIR Study of the Biochemical Effects Induced by X-Ray Irradiations Combined with GD Nanoparticles in F98 Glioma Cells. Biophysical Journal, 2016, 110, 475a.	0.2	0
21	Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: first FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst, The, 2016, 141, 2238-2249.	1.7	17
22	Hadron minibeam radiation therapy: feasibility study at the Heidelberg Ion-Beam Therapy Center (HIT). Radiotherapy and Oncology, 2016, 118, S70-S71.	0.3	2
23	SU-C-TeP3-09: Proton Minibeam Radiation Therapy Increases Normal Tissue Resistance. Medical Physics, 2016, 43, 3675-3676.	1.6	1
24	Proton minibeam radiation therapy: Experimental dosimetry evaluation. Medical Physics, 2015, 42, 7108-7113.	1.6	57
25	Technical Note: Implementation of biological washout processes within <scp>gate/geant</scp> 4—A Monte Carlo study in the case of carbon therapy treatments. Medical Physics, 2015, 42, 1773-1778.	1.6	6
26	Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Medical Physics, 2015, 42, 6703-6710.	1.6	47
27	Spatial fractionation of the dose using neon and heavier ions: A Monte Carlo study. Medical Physics, 2015, 42, 5928-5936.	1.6	14
28	Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Medical Physics, 2015, 42, 685-693.	1.6	36
29	Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study. Medical Physics, 2014, 41, 061706.	1.6	7
30	Monte Carlo-based dose calculation engine for minibeam radiation therapy. Physica Medica, 2014, 30, 57-62.	0.4	7
31	Scatter factors assessment in microbeam radiation therapy. Medical Physics, 2012, 39, 1234-1238.	1.6	11
32	Medical Applications of Synchrotron Radiation. Biological and Medical Physics Series, 2012, , 433-444.	0.3	1
33	222 PREPARING THE FORTHCOMING MRT CLINICAL TRIALS: DEVELOPMENT OF A MC CALCULATION ENGINE FOR DOSE COMPUTATION. Radiotherapy and Oncology, 2012, 102, S112-S113.	0.3	0
34	Monte Carloâ€based treatment planning system calculation engine for microbeam radiation therapy. Medical Physics, 2012, 39, 2829-2838.	1.6	34
35	Monte Carlo dose enhancement studies in microbeam radiation therapy. Medical Physics, 2011, 38, 4430-4439.	1.6	27
36	Radiation Therapy Using Synchrotron Radiation: Preclinical Studies Toward Clinical Trials. Synchrotron Radiation News, 2011, 24, 8-12.	0.2	2

#	Article	IF	CITATIONS
37	Dosimetry protocol for the forthcoming clinical trials in synchrotron stereotactic radiation therapy (SSRT). Medical Physics, 2011, 38, 1709-1717.	1.6	42
38	1576 poster A TREATMENT PLANNING SYSTEM FOR CONTRAST-ENHANCED STEREOTACTIC SYNCHROTRON RADIATION THERAPY. Radiotherapy and Oncology, 2011, 99, S586.	0.3	0
39	1547 poster BENCHMARKING OF A TREATMENT PLANNING SYSTEM MONTE CARLO ENGINE FOR MICROBEAM RADIATION THERAPY. Radiotherapy and Oncology, 2011, 99, S576.	0.3	0
40	Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy. Medical Physics, 2011, 39, 119-131.	1.6	57
41	Dosimetry protocol for the preclinical trials in whiteâ€beam minibeam radiation therapy. Medical Physics, 2011, 38, 5012-5020.	1.6	45
42	TU-E-BRB-03: A Treatment Planning System for Contrast-Enhanced Stereotactic Synchrotron Radiation Therapy Clinical Trials. Medical Physics, 2011, 38, 3767-3767.	1.6	0
43	Potential High Resolution Dosimeters For MRT. AIP Conference Proceedings, 2010, , .	0.3	25
44	Synchrotron Radiation Therapy from a Medical Physics point of view. , 2010, , .		5
45	Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy. Physics in Medicine and Biology, 2010, 55, 4375-4388.	1.6	46
46	MONTE CARLO DOSIMETRY FOR THE CLINICAL TRIALS IN MICROBEAM RADIATION THERAPY. Radiotherapy and Oncology, 2009, 92, S71-S72.	0.3	0
47	MONTE CARLO DOSIMETRY TO PREPARE THE PRE-CLINICAL TRIALS IN MINIBEAM RADIATION THERAPY. Radiotherapy and Oncology, 2009, 92, S221.	0.3	0
48	Neutron Radiation Dose Measurements in a Scanning Proton Therapy Room: Can Parents Remain Near Their Children During Treatment?. Frontiers in Oncology, 0, 12, .	1.3	5