Norihito Shibata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a degrader against oncogenic fusion protein FGFR3-TACC3. Bioorganic and Medicinal Chemistry Letters, 2022, 60, 128584.	1.0	5
2	Development of Rapid and Facile Solidâ€Phase Synthesis of PROTACs via a Variety of Binding Styles. ChemistryOpen, 2022, 11, .	0.9	10
3	Protocols for Synthesis of SNIPERs and the Methods to Evaluate the Anticancer Effects. Methods in Molecular Biology, 2021, 2365, 331-347.	0.4	2
4	Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer. ACS Medicinal Chemistry Letters, 2021, 12, 236-241.	1.3	19
5	Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. Journal of Medicinal Chemistry, 2021, 64, 15868-15882.	2.9	18
6	Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene, 2020, 39, 3867-3878.	2.6	25
7	SNIPERs—Hijacking IAP activity to induce protein degradation. Drug Discovery Today: Technologies, 2019, 31, 35-42.	4.0	112
8	Development of a Potent Protein Degrader against Oncogenic BCR-ABL Protein. Chemical and Pharmaceutical Bulletin, 2019, 67, 165-172.	0.6	18
9	Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues. MedChemComm, 2019, 10, 896-900.	3.5	15
10	Targeted Protein Degradation by Chimeric Small Molecules, PROTACs and SNIPERs. Frontiers in Chemistry, 2019, 7, 849.	1.8	39
11	Different Degradation Mechanisms of Inhibitor of Apoptosis Proteins (IAPs) by the Specific and Nongenetic IAP-Dependent Protein Eraser (SNIPER). Chemical and Pharmaceutical Bulletin, 2019, 67, 203-209.	0.6	34
12	Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. Journal of Biological Chemistry, 2018, 293, 6776-6790.	1.6	85
13	Development of Protein Degradation Inducers of Androgen Receptor by Conjugation of Androgen Receptor Ligands and Inhibitor of Apoptosis Protein Ligands. Journal of Medicinal Chemistry, 2018, 61, 543-575.	2.9	128
14	Pleckstrin homology domain of p210 <scp>BCR</scp> â€ <scp>ABL</scp> interacts with cardiolipin to regulate its mitochondrial translocation and subsequent mitophagy. Genes To Cells, 2018, 23, 22-34.	0.5	9
15	Pharmacological difference between degrader and inhibitor against oncogenic BCR-ABL kinase. Scientific Reports, 2018, 8, 13549.	1.6	44
16	In Vivo Knockdown of Pathogenic Proteins via Specific and Nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs). Journal of Biological Chemistry, 2017, 292, 4556-4570.	1.6	189
17	SNIPER(TACC3) induces cytoplasmic vacuolization and sensitizes cancer cells to Bortezomib. Cancer Science, 2017, 108, 1032-1041.	1.7	31
18	Development of protein degradation inducers of oncogenic <scp>BCR</scp> â€ <scp>ABL</scp> protein by conjugation of <scp>ABL</scp> kinase inhibitors and <scp>IAP</scp> ligands. Cancer Science, 2017, 108, 1657-1666.	1.7	80

NORIHITO SHIBATA

#	Article	IF	CITATIONS
19	Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules. Molecular Pharmacology, 2017, 91, 159-166.	1.0	45
20	Targeting the Allosteric Site of Oncoprotein BCR-ABL as an Alternative Strategy for Effective Target Protein Degradation. ACS Medicinal Chemistry Letters, 2017, 8, 1042-1047.	1.3	82
21	Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4478-4481.	1.0	8
22	Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4865-4869.	1.0	97
23	Molecular Design, Synthesis, and Evaluation of SNIPER(ER) That Induces Proteasomal Degradation of ERα. Methods in Molecular Biology, 2016, 1366, 549-560.	0.4	22
24	Protein Knockdown Technology: Application of Ubiquitin Ligase to Cancer Therapy. Current Cancer Drug Targets, 2016, 16, 136-146.	0.8	43
25	Degradation of Stop Codon Read-through Mutant Proteins via the Ubiquitin-Proteasome System Causes Hereditary Disorders. Journal of Biological Chemistry, 2015, 290, 28428-28437.	1.6	36
26	Development of hybrid small molecules that induce degradation of estrogen receptorâ€ a lpha and necrotic cell death in breast cancer cells. Cancer Science, 2013, 104, 1492-1498.	1.7	112
27	25-Hydroxycholesterol Activates the Integrated Stress Response to Reprogram Transcription and Translation in Macrophages. Journal of Biological Chemistry, 2013, 288, 35812-35823.	1.6	64
28	Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses. Cell, 2012, 151, 138-152.	13.5	487
29	Macrophages, Oxysterols and Atherosclerosis. Circulation Journal, 2010, 74, 2045-2051.	0.7	91
30	Regulation of macrophage function in inflammation and atherosclerosis. Journal of Lipid Research, 2009, 50, S277-S281.	2.0	99
31	Scavenger receptor expressed by endothelial cells (SREC)-I interacts with protein phosphatase 1α in L cells to induce neurite-like outgrowth. Biochemical and Biophysical Research Communications, 2007, 360, 269-274.	1.0	10
32	Increased cholesterol biosynthesis and hypercholesterolemia in mice overexpressing squalene synthase in the liver. Journal of Lipid Research, 2006, 47, 1950-1958.	2.0	32
33	Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis. FASEB Journal, 2006, 20, 2642-2644.	0.2	22
34	Inhibition of cholesterol biosynthesis by 25-hydroxycholesterol is independent of OSBP. Genes To Cells, 2005, 10, 793-801.	0.5	43
35	Vitamin E Is Essential for Mouse Placentation but Not for Embryonic Development Itself. Biology of Reproduction, 2005, 73, 983-987.	1.2	36
36	Regulation of SR-BI protein levels by phosphorylation of its associated protein, PDZK1. Proceedings of the United States of America, 2005, 102, 13404-13409.	3.3	48

#	Article	IF	CITATIONS
37	Type F Scavenger Receptor SREC-I Interacts with Advillin, a Member of the Gelsolin/Villin Family, and Induces Neurite-like Outgrowth. Journal of Biological Chemistry, 2004, 279, 40084-40090.	1.6	43