
Henry N Higgs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792832/publications.pdf Version: 2024-02-01

HENDY N HICCS

#	Article	IF	CITATIONS
1	Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Current Biology, 2022, 32, 1577-1592.e8.	1.8	11
2	SEC24A facilitates colocalization and Ca2+ flux between the endoplasmic reticulum and mitochondria. Journal of Cell Science, 2021, 134, .	1.2	3
3	Multiple roles for actin in secretory and endocytic pathways. Current Biology, 2021, 31, R603-R618.	1.8	45
4	Revolutionary view of two ways to split a mitochondrion. Nature, 2021, 593, 346-347.	13.7	20
5	Mff oligomerization is required for Drp1 activation and synergy with actin filaments during mitochondrial division. Molecular Biology of the Cell, 2021, 32, ar5.	0.9	18
6	Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 439-447.	3.3	35
7	Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Molecular Biology of the Cell, 2020, 31, 1259-1272.	0.9	17
8	FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes. Journal of the American Society of Nephrology: JASN, 2020, 31, 374-391.	3.0	17
9	Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. Journal of Cell Biology, 2020, 219, .	2.3	19
10	Two distinct actin filament populations have effects on mitochondria, with differences in stimuli and assembly factors. Journal of Cell Science, 2019, 132, .	1.2	29
11	A complex containing lysine-acetylated actin inhibits the formin INF2. Nature Cell Biology, 2019, 21, 592-602.	4.6	49
12	INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. Journal of Cell Biology, 2018, 217, 251-268.	2.3	246
13	The Pollard lab at Salk: moving the leading edge forward. Biophysical Reviews, 2018, 10, 1487-1490.	1.5	Ο
14	A fruitful tree: developing the dendritic nucleation model of actin-based cell motility. Molecular Biology of the Cell, 2018, 29, 2969-2978.	0.9	2
15	Long-Term Potentiation Requires a Rapid Burst of Dendritic Mitochondrial Fission during Induction. Neuron, 2018, 100, 860-875.e7.	3.8	97
16	Roles for Ena/VASP proteins in FMNL3-mediated filopodial assembly. Journal of Cell Science, 2018, 131, .	1.2	28
17	Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units. Current Biology, 2018, 28, 2033-2045.e5.	1.8	29
18	Function-Oriented Studies Targeting Pectenotoxin 2: Synthesis of the GH-Ring System and a Structurally Simplified Macrolactone. Organic Letters, 2017, 19, 5154-5157.	2.4	10

#	Article	IF	CITATIONS
19	Receptor-mediated Drp1 oligomerization on endoplasmic reticulum. Journal of Cell Biology, 2017, 216, 4123-4139.	2.3	98
20	Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. ELife, 2016, 5, .	2.8	121
21	Actin filaments as dynamic reservoirs for Drp1 recruitment. Molecular Biology of the Cell, 2016, 27, 3109-3121.	0.9	91
22	Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Kidney International, 2016, 90, 363-372.	2.6	40
23	The formin FMNL3 assembles plasma membrane protrusions that participate in cell–cell adhesion. Molecular Biology of the Cell, 2015, 26, 467-477.	0.9	38
24	Cell type–dependent mechanisms for formin-mediated assembly of filopodia. Molecular Biology of the Cell, 2015, 26, 4646-4659.	0.9	51
25	Assembly and Turnover of Short Actin Filaments by the Formin INF2 and Profilin. Journal of Biological Chemistry, 2015, 290, 22494-22506.	1.6	27
26	Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. ELife, 2015, 4, e11553.	2.8	252
27	A Role for Myosin II in Mammalian Mitochondrial Fission. Current Biology, 2014, 24, 409-414.	1.8	212
28	Monitoring ATP hydrolysis and ATPase inhibitor screening using ¹ H NMR. Chemical Communications, 2014, 50, 12037-12039.	2.2	21
29	Novel roles for actin in mitochondrial fission. Journal of Cell Science, 2014, 127, 4549-60.	1.2	128
30	Connecting the Cytoskeleton to the Endoplasmic Reticulum and Golgi. Current Biology, 2014, 24, R660-R672.	1.8	158
31	INF2-Mediated Severing through Actin Filament Encirclement and Disruption. Current Biology, 2014, 24, 156-164.	1.8	48
32	Nanostructured Self-Assembly of Inverted Formin 2 (INF2) and F-Actin–INF2 Complexes Revealed by Atomic Force Microscopy. Langmuir, 2014, 30, 7533-7539.	1.6	9
33	Coactosin-Like 1 Antagonizes Cofilin to Promote Lamellipodial Protrusion at the Immune Synapse. PLoS ONE, 2014, 9, e85090.	1.1	39
34	FMNL3 FH2–actin structure gives insight into formin-mediated actin nucleation and elongation. Nature Structural and Molecular Biology, 2013, 20, 111-118.	3.6	54
35	Inverted Formin 2 Regulates Actin Dynamics by Antagonizing Rho/Diaphanous-related Formin Signaling. Journal of the American Society of Nephrology: JASN, 2013, 24, 917-929.	3.0	48
36	Actin Monomers Activate Inverted Formin 2 by Competing with Its Autoinhibitory Interaction. Journal of Biological Chemistry, 2013, 288, 26847-26855.	1.6	48

#	Article	IF	CITATIONS
37	An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2. Science, 2013, 339, 464-467.	6.0	665
38	The C Terminus of Formin FMNL3 Accelerates Actin Polymerization and Contains a WH2 Domain-like Sequence That Binds Both Monomers and Filament Barbed Ends. Journal of Biological Chemistry, 2012, 287, 3087-3098.	1.6	57
39	The novel formin FMNL3 is a cytoskeletal regulator of angiogenesis Journal of Cell Science, 2012, 125, 1420-8.	1.2	46
40	Mutations to the Formin Homology 2 Domain of INF2 Protein Have Unexpected Effects on Actin Polymerization and Severing. Journal of Biological Chemistry, 2012, 287, 34234-34245.	1.6	38
41	DIAPH3 governs the cellular transition to the amoeboid tumour phenotype. EMBO Molecular Medicine, 2012, 4, 743-760.	3.3	92
42	Discussing the morphology of actin filaments in lamellipodia. Trends in Cell Biology, 2011, 21, 2-4.	3.6	16
43	Splice variant–specific cellular function of the formin INF2 in maintenance of Golgi architecture. Molecular Biology of the Cell, 2011, 22, 4822-4833.	0.9	78
44	Rho activation of mDia formins is modulated by an interaction with inverted formin 2 (INF2). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2933-2938.	3.3	74
45	Bi-modal Regulation of a Formin by srGAP2. Journal of Biological Chemistry, 2011, 286, 6577-6586.	1.6	40
46	Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Molecular Biology of the Cell, 2011, 22, 4575-4587.	0.9	113
47	Assembly of filopodia by the formin FRL2 (FMNL3). Cytoskeleton, 2010, 67, 755-772.	1.0	74
48	Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nature Genetics, 2010, 42, 72-76.	9.4	381
49	Purification of Recombinant Acyl-Coenzyme A:Cholesterol Acyltransferase 1 (ACAT1) from H293 Cells and Binding Studies between the Enzyme and Substrates Using Difference Intrinsic Fluorescence Spectroscopy. Biochemistry, 2010, 49, 9957-9963.	1.2	24
50	INF2 is an endoplasmic reticulum-associated formin protein. Journal of Cell Science, 2009, 122, 1430-1440.	1.2	118
51	Isoform-Selective Chemical Inhibition of mDia-Mediated Actin Assembly. Biochemistry, 2009, 48, 9327-9329.	1.2	23
52	Arp2 depletion inhibits sheetâ€like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cytoskeleton, 2008, 65, 904-922.	4.4	61
53	The Filamentous Actin Cross-Linking/Bundling Activity of Mammalian Formins. Journal of Molecular Biology, 2008, 384, 324-334.	2.0	52
54	Tropomyosin Regulates Elongation by Formin at the Fast-Growing End of the Actin Filament. Biochemistry, 2007, 46, 8146-8155.	1.2	67

#	Article	IF	CITATIONS
55	The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biology, 2007, 9, 1110-1121.	4.6	653
56	Dia-Interacting Protein Modulates Formin-Mediated Actin Assembly at the Cell Cortex. Current Biology, 2007, 17, 579-591.	1.8	120
57	Biochemical Analysis of Mammalian Formin Effects on Actin Dynamics. Methods in Enzymology, 2006, 406, 190-214.	0.4	45
58	Control of the Assembly of ATP- and ADP-Actin by Formins and Profilin. Cell, 2006, 124, 423-435.	13.5	509
59	INF2 Is a WASP Homology 2 Motif-containing Formin That Severs Actin Filaments and Accelerates Both Polymerization and Depolymerization. Journal of Biological Chemistry, 2006, 281, 26754-26767.	1.6	169
60	Mechanistic Differences in Actin Bundling Activity of Two Mammalian Formins, FRL1 and mDia2. Journal of Biological Chemistry, 2006, 281, 14383-14392.	1.6	152
61	Actin Dynamics: Growth from Dendritic Branches. Current Biology, 2005, 15, R346-R357.	1.8	68
62	Formin proteins: a domain-based approach. Trends in Biochemical Sciences, 2005, 30, 342-353.	3.7	342
63	Ena/VASP Proteins Enhance Actin Polymerization in the Presence of Barbed End Capping Proteins. Journal of Biological Chemistry, 2005, 280, 28653-28662.	1.6	275
64	Dissecting Requirements for Auto-inhibition of Actin Nucleation by the Formin, mDia1. Journal of Biological Chemistry, 2005, 280, 6986-6992.	1.6	164
65	Phylogenetic Analysis of the Formin Homology 2 Domain. Molecular Biology of the Cell, 2005, 16, 1-13.	0.9	249
66	The Mouse Formin, FRLα, Slows Actin Filament Barbed End Elongation, Competes with Capping Protein, Accelerates Polymerization from Monomers, and Severs Filaments. Journal of Biological Chemistry, 2004, 279, 20076-20087.	1.6	184
67	There goes the neighbourhood: Eps8 joins the barbed-end crowd. Nature Cell Biology, 2004, 6, 1147-1149.	4.6	13
68	Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood, 2004, 104, 1396-1403.	0.6	140
69	Listeria Motility: Biophysics Pushes Things Forward. Current Biology, 2003, 13, R302-R304.	1.8	11
70	The Mouse Formin mDia1 Is a Potent Actin Nucleation Factor Regulated by Autoinhibition. Current Biology, 2003, 13, 1335-1340.	1.8	389
71	Actin Nucleation: Cortactin Caught in the Act. Current Biology, 2002, 12, R593-R595.	1.8	5
72	Regulation of Actin Filament Network Formation Through ARP2/3 Complex: Activation by a Diverse Array of Proteins. Annual Review of Biochemistry, 2001, 70, 649-676.	5.0	608

#	Article	IF	CITATIONS
73	Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nature Cell Biology, 2001, 3, 76-82.	4.6	293
74	Actin nucleation: Nucleation-promoting factors are not all equal. Current Biology, 2001, 11, R1009-R1012.	1.8	12
75	Spectres of spectrin: molecular modeling and hemolytic disease. Trends in Biochemical Sciences, 2001, 26, 702.	3.7	0
76	Crystal Structure of Arp2/3 Complex. Science, 2001, 294, 1679-1684.	6.0	484
77	The Verprolin-like Central (VC) Region of Wiskott-Aldrich Syndrome Protein Induces Arp2/3 Complex-dependent Actin Nucleation. Journal of Biological Chemistry, 2001, 276, 35761-35767.	1.6	46
78	Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature, 2000, 404, 1007-1011.	13.7	502
79	The harder the better: effects of substrate rigidity on cell motility. Trends in Biochemical Sciences, 2000, 25, 427.	3.7	Ο
80	Tools for †The Sceptical Chymist': measuring macromolecular interaction kinetics in live cells by TIR–FRAP. Trends in Biochemical Sciences, 2000, 25, 540-541.	3.7	0
81	Activation by Cdc42 and Pip2 of Wiskott-Aldrich Syndrome Protein (Wasp) Stimulates Actin Nucleation by Arp2/3 Complex. Journal of Cell Biology, 2000, 150, 1311-1320.	2.3	453
82	Membrane Lipids Have Multiple Effects on Interfacial Catalysis by a Phosphatidic Acid-Preferring Phospholipase A1 from Bovine Testisâ€. Biochemistry, 2000, 39, 9335-9344.	1.2	10
83	Regulation of Actin Polymerization by Arp2/3 Complex and WASp/Scar Proteins. Journal of Biological Chemistry, 1999, 274, 32531-32534.	1.6	229
84	The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Current Biology, 1999, 9, 759-762.	1.8	164
85	Cdc42-induced actin filaments are protected from capping protein. Current Biology, 1999, 9, 979-S2.	1.8	28
86	Influence of the C Terminus of Wiskott-Aldrich Syndrome Protein (WASp) and the Arp2/3 Complex on Actin Polymerizationâ€. Biochemistry, 1999, 38, 15212-15222.	1.2	256
87	Interactions ofAcanthamoebaProfilin with Actin and Nucleotides Bound to Actinâ€. Biochemistry, 1998, 37, 10871-10880.	1.2	152
88	Cloning of a Phosphatidic Acid-preferring Phospholipase A1 from Bovine Testis. Journal of Biological Chemistry, 1998, 273, 5468-5477.	1.6	82
89	Purification and Properties of a Phosphatidic Acid-preferring Phospholipase A1 from Bovine Testis. Journal of Biological Chemistry, 1996, 271, 10874-10883.	1.6	58
90	The Human Androgen Receptor: Complementary Deoxyribonucleic Acid Cloning, Sequence Analysis and Gene Expression in Prostate. Molecular Endocrinology, 1988, 2, 1265-1275.	3.7	555