
David W Lamb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 2007, 8, 187-197.	6.0	292
2	Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 2009, 10, 459-470.	6.0	167
3	Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 2011, 12, 103-117.	6.0	111
4	Categorising sheep activity using a tri-axial accelerometer. Computers and Electronics in Agriculture, 2018, 145, 289-297.	7.7	108
5	Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers and Geosciences, 2003, 29, 813-822.	4.2	102
6	A Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca arundinacea var. Fletcher). Remote Sensing, 2016, 8, 109.	4.0	83
7	Improving pathways to adoption: Putting the right P's in precision agriculture. Computers and Electronics in Agriculture, 2008, 61, 4-9.	7.7	70
8	Monitoring distances travelled by horses using GPS tracking collars. Australian Veterinary Journal, 2010, 88, 176-181.	1.1	64
9	Farming the Web of Things. IEEE Intelligent Systems, 2013, 28, 12-19.	4.0	59
10	The use of qualitative airborne multispectral imaging for managing agricultural crops - a case study in south-eastern Australia. Australian Journal of Experimental Agriculture, 2000, 40, 725.	1.0	57
11	Low-resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy area instead of leaf area index. Australian Journal of Grape and Wine Research, 2008, 14, 9-17.	2.1	56
12	Predicting Lameness in Sheep Activity Using Tri-Axial Acceleration Signals. Animals, 2018, 8, 12.	2.3	56
13	Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. Crop and Pasture Science, 2010, 61, 389.	1.5	55
14	Radiometry of Proximal Active Optical Sensors (AOS) for Agricultural Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1793-1802.	4.9	55
15	Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis. Remote Sensing, 2018, 10, 226.	4.0	53
16	Effect of stripe rust on the yield response of wheat to nitrogen. Crop Journal, 2014, 2, 201-206.	5.2	47
17	Global navigation satellite system livestock tracking: system development and data interpretation. Animal Production Science, 2010, 50, 616.	1.3	44
18	Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat. Precision Agriculture, 2011, 12, 165-178.	6.0	43

DAVID W LAMB

#	Article	IF	CITATIONS
19	Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precision Agriculture, 2015, 16, 477-491.	6.0	42
20	An allometric model for estimating DBH of isolated and clustered Eucalyptus trees from measurements of crown projection area. Forest Ecology and Management, 2014, 326, 125-132.	3.2	33
21	Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR. Remote Sensing, 2016, 8, 388.	4.0	33
22	The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology, 2015, 202, 39-43.	4.8	31
23	GPS observation of shelter utilisation by Merino ewes. Animal Production Science, 2011, 51, 724.	1.3	28
24	Vineyard trellising with steel posts distorts data from EM soil surveys. Australian Journal of Grape and Wine Research, 2005, 11, 24-32.	2.1	27
25	Real-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM). Computers in Industry, 2018, 98, 183-191.	9.9	27
26	A relationship between faecal egg counts and the distance travelled by sheep. Small Ruminant Research, 2013, 111, 171-174.	1.2	26
27	Ultra low-level airborne (ULLA) sensing of crop canopy reflectance: A case study using a CropCircleâ,,¢ sensor. Computers and Electronics in Agriculture, 2009, 69, 86-91.	7.7	24
28	EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils. Computers and Electronics in Agriculture, 2010, 74, 100-109.	7.7	24
29	Spatial variability in pH and key soil nutrients: is this an opportunity to increase fertiliser and lime-use efficiency in grazing systems?. Crop and Pasture Science, 2014, 65, 817.	1.5	23
30	A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Computers and Electronics in Agriculture, 2018, 147, 12-17.	7.7	21
31	A Preliminary Investigation of the Potential of Sentinel-1 Radar to Estimate Pasture Biomass in a Grazed, Native Pasture Landscape. Remote Sensing, 2019, 11, 872.	4.0	20
32	Frost Monitoring Cyber–Physical System: A Survey on Prediction and Active Protection Methods. IEEE Internet of Things Journal, 2020, 7, 6514-6527.	8.7	18
33	The patterns of grazed pasture associated with scattered trees across an Australian temperate landscape: an investigation of pasture quantity and quality. Rangeland Journal, 2011, 33, 121.	0.9	17
34	Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind. Optics Letters, 2006, 31, 1035.	3.3	16
35	Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: a case study in Triticale (X Triticosecale Wittmack). Precision Agriculture, 2014, 15, 532-542.	6.0	16
36	Fast object detection in pastoral landscapes using a Colour Feature Extreme Learning Machine. Computers and Electronics in Agriculture, 2017, 139, 204-212.	7.7	16

DAVID W LAMB

#	Article	IF	CITATIONS
37	Discrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101978.	2.8	16
38	Extended-altitude, aerial mapping of crop NDVI using an active optical sensor: A case study using a Raptorâ"¢ sensor over wheat. Computers and Electronics in Agriculture, 2011, 77, 69-73.	7.7	15
39	An intrinsic exposed core optical fiber sensor as a quantitative surface crystallization monitoring sensor. Sensors and Actuators B: Chemical, 2013, 177, 964-969.	7.8	15
40	Winter Wheat Genotype Effect on Canopy Reflectance: Implications for Using NDVI for In‣eason Nitrogen Topdressing Recommendations. Agronomy Journal, 2015, 107, 2097-2106.	1.8	15
41	Use of proximal sensors to evaluate at the sub-paddock scale a pasture growth-rate model based on light-use efficiency. Crop and Pasture Science, 2014, 65, 400.	1.5	13
42	Detecting and Monitoring Industrial Scale Formation Using an Intrinsic Exposed-Core Optical Fiber Sensor. Industrial & Engineering Chemistry Research, 2010, 49, 4682-4686.	3.7	12
43	Apparent electrical conductivity (ECa) as a surrogate for neutron probe counts to measure soil moisture content in heavy clay soils (Vertosols). Soil Research, 2014, 52, 373.	1.1	12
44	Energy transfer in positive streamers. Journal Physics D: Applied Physics, 1989, 22, 1497-1503.	2.8	11
45	Assessment of an Intrinsic Optical Fiber Sensor forinSituMonitoring of Scale-Forming Salts. Industrial & Engineering Chemistry Research, 2008, 47, 1066-1070.	3.7	10
46	A Non-Reference Temperature Histogram Method for Determining Tc from Ground-Based Thermal Imagery of Orchard Tree Canopies. Remote Sensing, 2019, 11, 714.	4.0	10
47	Fibre evanescent field absorption (FEFA): an optical fibre technique for measuring light absorption in turbid water samples. Marine and Freshwater Research, 2004, 55, 533.	1.3	9
48	Discriminating between C3, C4, and Mixed C3/C4 Pasture Grasses of a Grazed Landscape Using Multi-Temporal Sentinel-1a Data. Remote Sensing, 2019, 11, 253.	4.0	9
49	Ultrahigh Dimensional Variable Selection for Interpolation of Point Referenced Spatial Data: A Digital Soil Mapping Case Study. PLoS ONE, 2016, 11, e0162489.	2.5	9
50	Litterfall and associated nutrient pools extend beyond the canopy of scattered eucalypt trees in temperate pastures. Plant and Soil, 2011, 345, 339-352.	3.7	8
51	A novel protocol for assessment of aboveground biomass in rangeland environments. Rangeland Journal, 2015, 37, 157.	0.9	8
52	Monitoring the effects of longwall mine-induced subsidence on vineyards. Environmental Earth Sciences, 2011, 62, 973-984.	2.7	7
53	Effect of Aluminum Neutron Probe Access Tubes on the Apparent Electrical Conductivity Recorded by an Electromagnetic Soil Survey Sensor. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 333-336.	3.1	7
54	Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape. Geocarto International, 2022, 37, 70-90.	3.5	7

DAVID W LAMB

#	Article	IF	CITATIONS
55	In-situ partitioning of evaporation and transpiration components using a portable evapotranspiration dome—A case study in Tall Fescue (Festuca arundinacea). Agricultural Water Management, 2019, 213, 352-357.	5.6	7
56	Combination active optical and passive thermal infrared sensor for low-level airborne crop sensing. Precision Agriculture, 2014, 15, 523-531.	6.0	6
57	Understanding the role of monolayers in retarding evaporation from water storage bodies. Chemical Physics Letters, 2015, 623, 37-41.	2.6	5
58	The Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Robotics. Agronomy, 2021, 11, 2290.	3.0	5
59	Guided-mode refraction model for optical fiber sensing of surface crystal growth. Optics Letters, 2010, 35, 3625.	3.3	4
60	The Dynamic Aerial Survey Algorithm Architecture and Its Potential Use in Airborne Fertilizer Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1772-1779.	4.9	4
61	A Comparative Study of Land Cover Classification Techniques for "Farmscapes―Using Very High Resolution Remotely Sensed Data. Photogrammetric Engineering and Remote Sensing, 2014, 80, 461-470.	0.6	4
62	The use of shadows in high spatial resolution, remotely sensed, imagery to estimate the height of individual Eucalyptus trees on undulating land. Rangeland Journal, 2015, 37, 467.	0.9	3
63	Investigating the potential of Sentinel-1 to detect varying spatial heterogeneity in pasture cover in grasslands. International Journal of Remote Sensing, 2021, 42, 274-285.	2.9	3
64	Ground truthing protocols for biomass estimation in rangeland environments. , 2013, , .		2
65	The Effect and Mitigation of Vine Trellising on EM38 Soil Conductivity Measurements. , 2007, , .		1
66	Integrating MODIS satellite imagery and proximal vegetation sensors to enable precision livestock management. , 2012, , .		1
67	A comparison of two ranging approaches in an active, optical plant canopy sensor. , 2014, , .		1
68	Progress in the application of exposed core, optical fibre sensors for detecting and monitoring surface crystallization processes. Proceedings of SPIE, 2008, , .	0.8	0
69	PMMA optical fibers as intrinsic sensors of surface crystal growth. Proceedings of SPIE, 2008, , .	0.8	0
70	Monitoring surface crystal growth using an intrinsic exposed-core optical fiber sensor (IECOFS). Proceedings of SPIE, 2008, , .	0.8	0
71	Tree cover extraction from 50 cm worldview2 imagery: A comparison of image processing techniques. , 2013, , .		0
72	Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates. , 2013, , .		0