
Chad R Snyder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting the Plateau Modulus from Molecular Parameters of Conjugated Polymers. ACS Central Science, 2022, 8, 268-274.	11.3	17
2	Three-Dimensional Molecular Orientation Imaging of a Semicrystalline Polymer Film under Shear Deformation. Macromolecules, 2022, 55, 2627-2635.	4.8	2
3	Elemental sulfur-molybdenum disulfide composites for high-performance cathodes for Li–S batteries: the impact of interfacial structures on electrocatalytic anchoring of polysulfides. MRS Communications, 2021, 11, 261-271.	1.8	1
4	Measuring Tie Chains and Trapped Entanglements in Semicrystalline Polymers. Macromolecules, 2020, 53, 5614-5626.	4.8	16
5	Polymer Additive Manufacturing: Confronting Complexity. ACS Symposium Series, 2019, , 1-6.	0.5	2
6	Precision, Tunable Deuterated Polyethylene via Polyhomologation. Macromolecules, 2019, 52, 5741-5749.	4.8	7
7	Morphology of a thermally stable small molecule OPV blend comprising a liquid crystalline donor and fullerene acceptor. Journal of Materials Chemistry A, 2019, 7, 16458-16471.	10.3	17
8	Synthesis, Purification and Characterization of Polymerizable Multifunctional Quaternary Ammonium Compounds. Molecules, 2019, 24, 1464.	3.8	16
9	Dynamical Correlations for Statistical Copolymers from High-Throughput Broad-Band Dielectric Spectroscopy. ACS Combinatorial Science, 2019, 21, 276-299.	3.8	5
10	Structure, nanomechanics, and dynamics of dispersed surfactantâ€free clay nanocomposite films. Polymer Engineering and Science, 2018, 58, 1285-1295.	3.1	2
11	pyPRISM: A Computational Tool for Liquid-State Theory Calculations of Macromolecular Materials. Macromolecules, 2018, 51, 2906-2922.	4.8	43
12	Alkane Encapsulation Induces Strain in Small-Diameter Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2018, 122, 11577-11585.	3.1	11
13	Glassy phases in organic semiconductors. Current Opinion in Solid State and Materials Science, 2018, 22, 41-48.	11.5	26
14	Assessing the Huang–Brown Description of Tie Chains for Charge Transport in Conjugated Polymers. ACS Macro Letters, 2018, 7, 1333-1338.	4.8	79
15	Aggregation and Solubility of a Model Conjugated Donor–Acceptor Polymer. Journal of Physical Chemistry Letters, 2018, 9, 4802-4807.	4.6	36
16	Dependence of electrical performance on structural organization in polymer field effect transistors. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1063-1074.	2.1	15
17	Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 2017, 117, 1-10.	3.8	84
18	Reduced bimolecular recombination in blade-coated, high-efficiency, small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 6893-6904.	10.3	16

CHAD R SNYDER

#	Article	IF	CITATIONS
19	Raman Identification of Multiple Melting Peaks of Polyethylene. Macromolecules, 2017, 50, 6174-6183.	4.8	17
20	Phase behavior of poly(3â€hexylthiopheneâ€2,5â€diyl). Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1202-1206.	2.1	12
21	Film morphology evolution during solvent vapor annealing of highly efficient small molecule donor/acceptor blends. Journal of Materials Chemistry A, 2016, 4, 15511-15521.	10.3	35
22	Chapter 7. Structure and Order in Organic Semiconductors. RSC Polymer Chemistry Series, 2016, , 219-274.	0.2	3
23	Characterization of clay composite ballistic witness materials. Journal of Materials Science, 2015, 50, 7048-7057.	3.7	9
24	Classification of semiconducting polymeric mesophases to optimize device postprocessing. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1641-1653.	2.1	23
25	A Simple Method for Complex Monomer Creation in the Matrix Method for the Statistics and Thermodynamics of a Confined Polymer Chain. Macromolecules, 2015, 48, 863-870.	4.8	1
26	In Situ Characterization of Polymer–Fullerene Bilayer Stability. Macromolecules, 2015, 48, 383-392.	4.8	126
27	Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit. Journal of Chemical Physics, 2014, 140, 034905.	3.0	3
28	Measuring Order in Regioregular Poly(3-hexylthiophene) with Solid-State ¹³ C CPMAS NMR. ACS Macro Letters, 2014, 3, 130-135.	4.8	37
29	Quantifying Crystallinity in High Molar Mass Poly(3-hexylthiophene). Macromolecules, 2014, 47, 3942-3950.	4.8	95
30	Polymer Chain Dynamics in Intercalated Poly(Îμ-caprolactone)/Nanoplatelet Blends. Macromolecules, 2013, 46, 2235-2240.	4.8	16
31	Imaging the Molecular Structure of Polyethylene Blends with Broadband Coherent Raman Microscopy. ACS Macro Letters, 2012, 1, 1347-1351.	4.8	23
32	Poly(3-hexylthiophene) and [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl Ester Mixing in Organic Solar Cells. Macromolecules, 2012, 45, 6587-6599.	4.8	103
33	Time-Dependent CO ₂ Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve. Journal of the American Chemical Society, 2012, 134, 7944-7951.	13.7	74
34	Effect of Regioregularity on the Semicrystalline Structure of Poly(3-hexylthiophene). Macromolecules, 2011, 44, 7088-7091.	4.8	60
35	Organofunctionalized montmorillonite/epoxy nanocomposites: The effect of interlayer cation distribution on mechanical properties. Polymer Composites, 2011, 32, 67-78.	4.6	17
36	Influence of substrate on crystallization in polythiophene/fullerene blends. Solar Energy Materials and Solar Cells, 2011, 95, 1375-1381.	6.2	42

CHAD R SNYDER

#	Article	IF	CITATIONS
37	Measuring the Extent of Phase Separation in Poly-3-Hexylthiophene/Phenyl-C ₆₁ -Butyric Acid Methyl Ester Photovoltaic Blends with ¹ H Spin Diffusion NMR Spectroscopy. Chemistry of Materials, 2010, 22, 2930-2936.	6.7	46
38	Nanoscale thermal–mechanical probe determination of â€~softening transitions' in thin polymer films. Nanotechnology, 2008, 19, 495703.	2.6	24
39	Quantifying the Directional Parameter of Structural Anisotropy in Porous Media. Tissue Engineering, 2006, 12, 1597-1606.	4.6	18
40	Ballistic fibers: A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure. Journal of Materials Science, 2006, 41, 4105-4116.	3.7	72
41	A methodology for detecting interfacial debonding in clay/epoxy nanocomposites. Journal of Adhesion Science and Technology, 2006, 20, 1079-1089.	2.6	1
42	Quantifying the Directional Parameter of Structural Anisotropy in Porous Media. Tissue Engineering, 2006, .	4.6	0
43	Dielectric properties of nylon 6/clay nanocomposites from on-line process monitoring and off-line measurements. Polymer, 2005, 46, 7201-7217.	3.8	69
44	Monte-Carlo simulation for the fracture process and energy release rate of unidirectional carbon fiber-reinforced polymers at different temperatures. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1277-1284.	7.6	3
45	Proton NMR Characterization of Room-Temperature Aging after Modest Thermal Cycling in Isotactic Polypropylenes. Macromolecules, 2003, 36, 4813-4826.	4.8	13
46	High sensitivity technique for measurement of thin film out-of-plane expansion. II. Conducting and semiconducting samples. AIP Conference Proceedings, 2001, , .	0.4	0
47	A precision capacitance cell for measurement of thin film out-of-plane expansion. III. Conducting and semiconducting materials. IEEE Transactions on Instrumentation and Measurement, 2001, 50, 1212-1215.	4.7	2
48	Determination of the Dielectric Constant of Nanoparticles. 1. Dielectric Measurements of Buckminsterfullerene Solutions. Journal of Physical Chemistry B, 2000, 104, 11058-11065.	2.6	14
49	Dynamically induced loss and its implications on temperature scans of relaxation processes. Journal of Chemical Physics, 1999, 110, 1106-1111.	3.0	7
50	A precision capacitance cell for measurement of thin film out-of-plane expansion. II. Hygrothermal expansion. Review of Scientific Instruments, 1999, 70, 2424-2431.	1.3	7
51	Critical comparison between time- and frequency-domain relaxation functions. Physical Review B, 1999, 60, 984-990.	3.2	15
52	A precision capacitance cell for measurement of thin film out-of-plane expansion. I. Thermal expansion. Review of Scientific Instruments, 1998, 69, 3889-3895.	1.3	12
53	Limitations on distinguishing between representations of relaxation data over narrow frequency ranges. Journal of Applied Physics, 1998, 84, 4421-4427.	2.5	9
54	Characterization of Epoxy-Functionalized Silsesquioxanes as Potential Underfill Encapsulants. Materials Research Society Symposia Proceedings, 1998, 519, 15.	0.1	11

#	Article	IF	CITATIONS
55	High sensitivity technique for measurement of thin film out-of-plane expansion. , 1998, , .		1
56	Effect of Chain Transport in the Secondary Surface Nucleation Based Flux Theory and in the Lauritzenâ^'Hoffman Crystal Growth Rate Formalism. Macromolecules, 1997, 30, 2759-2766.	4.8	14
57	Lateral Substrate Completion Rate in the Lauritzenâ d'Hoffman Secondary Surface Nucleation Theory:Â Nature of the Friction Coefficient. Macromolecules, 1996, 29, 7508-7513.	4.8	13