
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792328/publications.pdf Version: 2024-02-01

REN FADD

#	Article	IF	CITATIONS
1	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
2	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
4	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	1.5	735
5	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, 2015, 91, .	1.6	674
6	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	3.0	656
7	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
8	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
9	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	3.0	392
10	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South. Astrophysical Journal Letters, 2017, 848, L19.	3.0	390
11	Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astronomy and Astrophysics, 2020, 636, A104.	2.1	256
12	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
13	Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature, 2017, 548, 426-429.	13.7	208
14	Are LIGO's Black Holes Made from Smaller Black Holes?. Astrophysical Journal Letters, 2017, 840, L24.	3.0	189
15	THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. Astrophysical Journal, 2014, 795, 105.	1.6	159
16	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
17	GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP. Astrophysical Journal Letters, 2016, 829, L15.	3.0	126
18	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125

#	Article	IF	CITATIONS
19	PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA. Astrophysical Journal, 2015, 804, 114.	1.6	117
20	Using Spin to Understand the Formation of LIGO and Virgo's Black Holes. Astrophysical Journal Letters, 2018, 854, L9.	3.0	108
21	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
22	Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Physical Review D, 2012, 85, .	1.6	79
23	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	1.6	72
24	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
25	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
26	PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS. Astrophysical Journal, 2016, 825, 116.	1.6	68
27	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
28	Black Hole Coagulation: Modeling Hierarchical Mergers in Black Hole Populations. Astrophysical Journal, 2020, 893, 35.	1.6	66
29	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
30	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
31	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
32	A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L33.	3.0	55
33	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
34	NEUTRON STARS VERSUS BLACK HOLES: PROBING THE MASS GAP WITH LIGO/VIRGO. Astrophysical Journal Letters, 2015, 807, L24.	3.0	51
35	Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Physical Review D, 2014, 89, .	1.6	50
36	When Are LIGO/Virgo's Big Black Hole Mergers?. Astrophysical Journal, 2021, 912, 98.	1.6	48

#	Article	IF	CITATIONS
37	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
38	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
39	SUPPLEMENT: "GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP―(2016, ApJL, 829, L15). Astrophysical Journal, Supplement Series, 2016, 226, 10.	3.0	41
40	Statistical gravitational waveform models: What to simulate next?. Physical Review D, 2017, 96, .	1.6	40
41	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
42	A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 826, L29.	3.0	38
43	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
44	Parameter estimation of gravitational waves from nonprecessing black hole-neutron star inspirals with higher harmonics: Comparing Markov-chain MonteÂCarlo posteriors to an effective Fisher matrix. Physical Review D, 2014, 89, .	1.6	36
45	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
46	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
47	A Search for Kilonovae in the Dark Energy Survey. Astrophysical Journal, 2017, 837, 57.	1.6	34
48	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	2.9	32
49	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
50	Ain't No Mountain High Enough: Semiparametric Modeling of LIGO–Virgo's Binary Black Hole Mass Distribution. Astrophysical Journal, 2022, 924, 101.	1.6	31
51	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
52	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
53	Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey. Astrophysical Journal, 2020, 901, 83.	1.6	28
54	Physical approach to the marginalization of LIGO calibration uncertainties. Physical Review D, 2021, 103, .	1.6	27

#	Article	IF	CITATIONS
55	exocartographer: A Bayesian Framework for Mapping Exoplanets in Reflected Light. Astronomical Journal, 2018, 156, 146.	1.9	25
56	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
5 7	A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L34.	3.0	20
58	Poking Holes: Looking for Gaps in LIGO/Virgo's Black Hole Population. Astrophysical Journal Letters, 2021, 913, L23.	3.0	20
59	First joint observation by the underground gravitational-wave detector KACRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
60	Black Hole Leftovers: The Remnant Population from Binary Black Hole Mergers. Astrophysical Journal Letters, 2021, 914, L18.	3.0	19
61	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	3.0	14
62	Transient glitch mitigation in Advanced LIGO data. Physical Review D, 2021, 104, .	1.6	14
63	Rapid gravitational wave parameter estimation with a single spin: Systematic uncertainties in parameter estimation with the SpinTaylorF2 approximation. Physical Review D, 2015, 92, .	1.6	11
64	Constraining unmodeled physics with compact binary mergers from GWTC-1. Physical Review D, 2021, 103, .	1.6	10
65	Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing runs. Astronomy and Computing, 2020, 33, 100425.	0.8	9
66	SOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*. Astrophysical Journal, 2022, 929, 115.	1.6	9
67	Early Advanced LIGO binary neutron-star sky localization and parameter estimation. Journal of Physics: Conference Series, 2016, 716, 012031.	0.3	5
68	SYSTEMATIC ERRORS IN LOW-LATENCY GRAVITATIONAL WAVE PARAMETER ESTIMATION IMPACT ELECTROMAGNETIC FOLLOW-UP OBSERVATIONS. Astrophysical Journal, 2016, 820, 7.	1.6	2
69	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
70	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1