Satoru Ohisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792240/publications.pdf

Version: 2024-02-01

394421 302126 2,395 47 19 39 citations h-index g-index papers 47 47 47 3338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neodymium Chloride-Doped Perovskite Nanocrystals for Efficient Blue Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53891-53898.	8.0	33
2	Surface Crystal Growth of Perovskite Nanocrystals via Postsynthetic Lead(II) Bromide Treatment to Increase the Colloidal Stability and Efficiency of Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45574-45581.	8.0	21
3	Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine. Advanced Optical Materials, 2020, 8, 2000289.	7.3	52
4	Molecular Orientations of Delayed Fluorescent Emitters in a Series of Carbazole-Based Host Materials. Frontiers in Chemistry, 2020, 8, 427.	3.6	24
5	Blue Perovskite Lightâ€Emitting Devices: Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070054.	7.3	O
6	Gel Permeation Chromatography Purification Process for Highly Efficient Perovskite Nanocrystal Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 393-397.	0.3	7
7	Doping of Tetraalkylammonium Salts in Polyethylenimine Ethoxylated for Efficient Electron Injection Layers in Solution-Processed Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25351-25357.	8.0	14
8	An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off. Advanced Functional Materials, 2019, 29, 1808022.	14.9	34
9	Low-temperature cross-linking of polyethyleneimine ethoxylated using silane coupling agents to obtain stable electron injection layers in solution-processed organic light-emitting devices. Journal of Materials Chemistry C, 2019, 7, 6759-6766.	5.5	8
10	Molecular Orientation: Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970131.	21.0	0
11	Solutionâ€Processed Tandem OLEDs: An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off (Adv. Funct. Mater. 16/2019). Advanced Functional Materials, 2019, 29, 1970102.	14.9	O
12	Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds. Advanced Materials, 2019, 31, e1808300.	21.0	62
13	ZnO/Polyethyleneimine Ethoxylated/Lithium Bis(trifluoromethanesulfonyl)imide for Solution-Processed Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 577-583.	0.3	O
14	Visualization of Organic Light-Emitting Device Structures Fabricated by Solution-Processing Using Neutron Reflectivity Measurements. Journal of Surface Analysis (Online), 2019, 26, 2-9.	0.1	0
15	Post-Treatment-Free Solution-Processed Reduced Phosphomolybdic Acid Containing Molybdenum Oxide Units for Efficient Hole-Injection Layers in Organic Light-Emitting Devices. Inorganic Chemistry, 2018, 57, 1950-1957.	4.0	15
16	Organic Lightâ€Emitting Devices: Airâ€Stable and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers (Adv.) Tj ETQq0	0 Ozng 6 T /	Overlock 10 Tf
17	Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17318-17326.	8.0	27
18	Airâ€Stable and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers. Advanced Materials, 2018, 30, e1705915.	21.0	36

#	Article	IF	CITATIONS
19	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	31.4	1,123
20	Operation behaviors of interconnecting-layers in solution-processed tandem organic light-emitting devices. Organic Electronics, 2018, 63, 98-103.	2.6	4
21	Interfacial Engineering of Perovskite Quantum-Dot Light-Emitting Devices Using Alkyl Ammonium Salt Layer. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 329-333.	0.3	2
22	Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent "Diglyme― for Highly Efficient Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24607-24612.	8.0	102
23	Colorful Squaraines Dyes for Efficient Solution-Processed All Small-Molecule Semitransparent Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26465-26472.	8.0	28
24	Two-Dimensional Ca ₂ Nb ₃ O ₁₀ Perovskite Nanosheets for Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27885-27893.	8.0	15
25	Neutron Reflectivity Study for Solution-processed Organic/Organic Interfacial Structures in Organic Light-emitting Devices. Hamon, 2018, 28, 183-186.	0.0	1
26	Highly efficient, deep-red organic light-emitting devices using energy transfer from exciplexes. Journal of Materials Chemistry C, 2017, 5, 527-530.	5.5	72
27	High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18054-18060.	8.0	289
28	Addition of Lithium 8-Quinolate into Polyethylenimine Electron-Injection Layer in OLEDs: Not Only Reducing Driving Voltage but Also Improving Device Lifetime. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18113-18119.	8.0	32
29	57â€3: <i>Invited Paper</i> : Solutionâ€Processed Electron Transporting Layer and Interface Characterization in Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 849-852.	0.3	2
30	Pâ€172: Solutionâ€Processed Polymer and Smallâ€Molecule Tandem OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1922-1924.	0.3	0
31	Pâ€192: Efficient Deep Red Phosphorescent OLEDs with an EL Emission Peak of 670 nm. Digest of Technical Papers SID International Symposium, 2017, 48, 1991-1992.	0.3	1
32	Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials, 2017, 29, 8630-8636.	6.7	164
33	A Series of Lithium Pyridyl Phenolate Complexes with a Pendant Pyridyl Group for Electron-Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40541-40548.	8.0	8
34	Influence of solution- and thermal-annealing processes on the sub-nanometer-ordered organic–organic interface structure of organic light-emitting devices. Nanoscale, 2017, 9, 25-30.	5 . 6	29
35	Inhibition of solution-processed 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile crystallization by mixing additives for hole injection layers in organic light-emitting devices. Polymer Journal, 2017, 49, 149-154.	2.7	8
36	Surface-Modified Zinc Oxide Nanoparticles for Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 483-488.	0.3	3

#	Article	IF	CITATIONS
37	Applications of Ionic Liquids in Organic Electronic Devices. RSC Smart Materials, 2017, , 196-233.	0.1	0
38	A Solution-Processable Small-Molecule Host for Phosphorescent Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 317-321.	0.3	3
39	Poly(pyridinium iodide ionic liquid)-based electron injection layers for solution-processed organic light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 6713-6719.	5.5	17
40	Effect of substituents in a series of carbazole-based host-materials toward high-efficiency carbene-based blue OLEDs. Journal of Materials Chemistry C, 2016, 4, 9476-9481.	5.5	19
41	A Solution-Processed Heteropoly Acid Containing MoO ₃ Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20946-20954.	8.0	50
42	Comparison of Spin and Blade Coating Methods in Solution-process for Organic Light-emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 343-347.	0.3	3
43	Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices. ACS Applied Materials & Interfaces, 2015, 7, 20779-20785.	8.0	37
44	Efficient Electron Injection by Size- and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25373-25377.	8.0	29
45	Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry. Advanced Materials Interfaces, 2014, 1, 1400097.	3.7	18
46	Fabrication of Light Scattering Structure by Self-organization of a Polymer: Application to Light Out-coupling Enhancement in OLEDs. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 363-367.	0.3	1
47	Organic Light Emitting Devices: Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	3.7	0