Michael J Pecaut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791844/publications.pdf

Version: 2024-02-01

91 2,614 31 46
papers citations h-index g-index

93 93 93 2124 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effects of spaceflight on innate immune function and antioxidant gene expression. Journal of Applied Physiology, 2009, 106, 1935-1942.	1.2	142
2	Spaceflight effects on T lymphocyte distribution, function and gene expression. Journal of Applied Physiology, 2009, 106, 194-202.	1.2	137
3	A murine model for bone loss from therapeutic and space-relevant sources of radiation. Journal of Applied Physiology, 2006, 101, 789-793.	1.2	118
4	Spaceflight Environment Induces Mitochondrial Oxidative Damage in Ocular Tissue. Radiation Research, 2013, 180, 340-350.	0.7	81
5	Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. Journal of Applied Physiology, 2003, 94, 2095-2103.	1.2	79
6	Selected Contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. I. Immune population distributions. Journal of Applied Physiology, 2003, 94, 2085-2094.	1.2	70
7	Spaceflight Activates Lipotoxic Pathways in Mouse Liver. PLoS ONE, 2016, 11, e0152877.	1.1	69
8	Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain. Radiation Research, 2016, 185, 647-657.	0.7	62
9	Vive la radior \tilde{A} ©sistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget, 2018, 9, 14692-14722.	0.8	62
10	Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation. Radiation Research, 2008, 169, 607-614.	0.7	60
11	Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: Part I. Immunology Letters, 2002, 80, 55-66.	1.1	59
12	Changes in Mouse Thymus and Spleen after Return from the STS-135 Mission in Space. PLoS ONE, 2013, 8, e75097.	1.1	59
13	Total-body irradiation with high-LET particles: acute and chronic effects on the immune system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R677-R688.	0.9	57
14	Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: A model of long-duration spaceflight. Bone, 2012, 51, 756-764.	1.4	54
15	Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver. International Journal of Molecular Sciences, 2017, 18, 2062.	1.8	48
16	Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?. PLoS ONE, 2017, 12, e0174174.	1.1	45
17	Characterization of the naive murine antibody repertoire using unamplified high-throughput sequencing. PLoS ONE, 2018, 13, e0190982.	1.1	44
18	Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2072-R2078.	0.9	43

#	Article	IF	Citations
19	Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. Journal of Cellular Biochemistry, 2010, 110, 372-381.	1.2	43
20	Shifts in bone marrow cell phenotypes caused by spaceflight. Journal of Applied Physiology, 2009, 106, 548-555.	1.2	42
21	Biological and metabolic response in STS-135 space-flown mouse skin. Free Radical Research, 2014, 48, 890-897.	1.5	42
22	Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis. International Journal of Molecular Sciences, 2018, 19, 2546.	1.8	41
23	Variable hematopoietic responses to acute photons, protons and simulated solar particle event protons. In Vivo, 2008, 22, 159-69.	0.6	40
24	Spaceflight induces oxidative damage to bloodâ€brain barrier integrity in a mouse model. FASEB Journal, 2020, 34, 15516-15530.	0.2	39
25	Low-Dose Photons Modify Liver Response to Simulated Solar Particle Event Protons. Radiation Research, 2008, 169, 280-287.	0.7	38
26	Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Scientific Reports, 2019, 9, 13304.	1.6	38
27	Combined effects of space flight factors and radiation on humans. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 430, 211-219.	0.4	37
28	Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: Part II. Immunology Letters, 2002, 80, 67-73.	1.1	37
29	Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: Open field, rotorod, and acoustic startle. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 329-340.	1.0	37
30	Proteomic Analysis of Mouse Brain Subjected to Spaceflight. International Journal of Molecular Sciences, 2019, 20, 7.	1.8	33
31	Acute Effects of Iron-Particle Radiation on Immunity. Part II: Leukocyte Activation, Cytokines and Adhesion. Radiation Research, 2006, 165, 78-87.	0.7	32
32	Acute Effects of Iron-Particle Radiation on Immunity. Part I: Population Distributions. Radiation Research, 2006, 165, 68-77.	0.7	32
33	Low Dose, Low Dose Rate Photon Radiation Modifies Leukocyte Distribution and Gene Expression in CD4+ T Cells. Journal of Radiation Research, 2009, 50, 139-150.	0.8	31
34	Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung. Journal of Applied Physiology, 2010, 108, 162-171.	1.2	31
35	The Effects of Low-Dose, High-LET Radiation Exposure on Three Models of Behavior in C57BL/6 Mice. Radiation Research, 2004, 162, 148-156.	0.7	30
36	Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations. Scientific Reports, 2019, 9, 8215.	1.6	30

#	Article	IF	CITATIONS
37	Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. Npj Microgravity, 2018, 4, 13.	1.9	29
38	Whole-body irradiation and long-term modification of bone marrow-derived cell populations by lowand high-LET radiation. In Vivo, 2006, 20, 781-9.	0.6	29
39	Low-dose, low-dose-rate proton radiation modulates CD4 ⁺ T cell gene expression. International Journal of Radiation Biology, 2009, 85, 250-261.	1.0	28
40	Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice. Life Sciences in Space Research, 2018, 16, 63-75.	1.2	26
41	Response of Extracellular Matrix Regulators in Mouse Lung after Exposure to Photons, Protons and Simulated Solar Particle Event Protons. Radiation Research, 2009, 172, 30-41.	0.7	25
42	Low-Dose Total-Body \hat{l}^3 Irradiation Modulates Immune Response to Acute Proton Radiation. Radiation Research, 2012, 177, 251-264.	0.7	25
43	Biological Effects of Passive Versus Active Scanning Proton Beams on Human Lung Epithelial Cells. Technology in Cancer Research and Treatment, 2015, 14, 81-98.	0.8	25
44	Spaceflight-relevant types of ionizing radiation and cortical bone: Potential LET effect?. Advances in Space Research, 2008, 42, 1889-1897.	1.2	24
45	Bone Architectural and Structural Properties after ⁵⁶ Fe ²⁶⁺ Radiation-Induced Changes in Body Mass. Radiation Research, 2008, 170, 201-207.	0.7	24
46	Comparison of proton and electron radiation effects on biological responses in liver, spleen and blood. International Journal of Radiation Biology, 2011, 87, 1173-1181.	1.0	23
47	Low-dose \hat{I}^3 -rays modify CD4+T cell signalling response to simulated solar particle event protons in a mouse model. International Journal of Radiation Biology, 2011, 87, 24-35.	1.0	23
48	Effects of skeletal unloading on the antibody repertoire of tetanus toxoid and/or CpG treated C57BL/6J mice. PLoS ONE, 2019, 14, e0210284.	1.1	22
49	The impact of mouse strain on iron ion radio-immune response of leukocyte populations. International Journal of Radiation Biology, 2010, 86, 409-419.	1.0	20
50	Low-dose Photon and Simulated Solar Particle Event Proton Effects on Foxp3+ T Regulatory Cells and other Leukocytes. Technology in Cancer Research and Treatment, 2010, 9, 637-649.	0.8	20
51	Low-dose Gamma-rays and Simulated Solar Particle Event Protons Modify Splenocyte Gene and Cytokine Expression Patterns. Journal of Radiation Research, 2011, 52, 701-711.	0.8	20
52	Long-term changes in rat hematopoietic and other physiological systems after high-energy iron ion irradiation. International Journal of Radiation Biology, 2008, 84, 549-559.	1.0	18
53	Role of NADPH Oxidase as a Mediator of Oxidative Damage in Low-Dose Irradiated and Hindlimb-Unloaded Mice. Radiation Research, 2017, 188, 392-399.	0.7	17
54	Brain organoids: A promising model to assess oxidative stressâ€induced central nervous system damage. Developmental Neurobiology, 2021, 81, 653-670.	1.5	15

#	Article	IF	CITATIONS
55	Space-relevant radiation modifies cytokine profiles, signaling proteins and Foxp3+T cells. International Journal of Radiation Biology, 2013, 89, 26-35.	1.0	14
56	Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells. Stem Cells and Development, 2018, 27, 805-818.	1.1	14
57	HZE radiation and dopaminergic modification of startle and prepulse inhibition in mice. Physiology and Behavior, 2005, 86, 103-110.	1.0	13
58	Simulation of a 36h solar particle event at LLUMC using a proton beam scanning system. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 791-794.	0.6	12
59	Investigation of the Effects of Head Irradiation with Gamma Rays and Protons on Startle and Pre-Pulse Inhibition Behavior in Mice. Radiation Research, 2012, 177, 685-692.	0.7	12
60	Genetic background and lymphocyte populations after total-body exposure to iron ion radiation. International Journal of Radiation Biology, 2011, 87, 8-23.	1.0	11
61	Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Scientific Reports, 2021, 11, 11452.	1.6	11
62	Radiation and primary response to lipopolysaccharide: bone marrow-derived cells and susceptible organs. In Vivo, 2007, 21, 453-61.	0.6	11
63	Analysis of a Metalloporphyrin Antioxidant Mimetic (MnTE-2-PyP) as a Radiomitigator: Prostate Tumor and Immune Status. Technology in Cancer Research and Treatment, 2012, 11, 447-457.	0.8	10
64	Changes in the distribution and function of leukocytes after whole-body iron ion irradiation. Journal of Radiation Research, 2016, 57, 477-491.	0.8	10
65	Validation of Methods to Assess the Immunoglobulin Gene Repertoire in Tissues Obtained from Mice on the International Space Station. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2017, 5, 2-23.	0.3	10
66	Long-term effects of low-dose proton radiation on immunity in mice: shielded vs. unshielded. Aviation, Space, and Environmental Medicine, 2003, 74, 115-24.	0.6	10
67	Genetic and Apoptotic Changes in Lungs of Mice Flown on the STS-135 Mission in Space. In Vivo, 2015, 29, 423-33.	0.6	10
68	Hypergravity-induced immunomodulation in a rodent model: hematological and lymphocyte function analyses. Journal of Applied Physiology, 2004, 97, 29-38.	1.2	9
69	Radiation and primary immune response to lipopolysaccharide: lymphocyte distribution and function. In Vivo, 2007, 21, 463-70.	0.6	9
70	Minocycline modulates cytokine and gene expression profiles in the brain after whole-body exposure to radiation. In Vivo, 2014, 28, 21-32.	0.6	9
71	Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation. Free Radical Research, 2013, 47, 811-820.	1.5	8
72	Validation of Methods to Assess the Immunoglobulin Gene Repertoire in Tissues Obtained from Mice on the International Space Station. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2017, 5, 2-23.	0.3	8

#	Article	IF	Citations
73	Strain-related differences and radiation quality effects on mouse leukocytes: gamma-rays and protons (with and without aluminum shielding). In Vivo, 2011, 25, 871-80.	0.6	8
74	Radiation and secondary immune response to lipopolysaccharide. In Vivo, 2008, 22, 423-34.	0.6	6
75	Prevalence and arrangement of lignified vascular elements in 6-day-old alfalfa (Medicago sativa L.) seedlings raised in reduced gravity. Journal of Plant Physiology, 1996, 149, 539-547.	1.6	5
76	Effects of skeletal unloading on the bone marrow antibody repertoire of tetanus toxoid and/or CpG treated C57BL/6J mice. Life Sciences in Space Research, 2019, 22, 16-28.	1.2	5
77	"Out-of-field" effects of head-localized proton irradiation on peripheral immune parameters. In Vivo, 2003, 17, 513-21.	0.6	5
78	Analysis of minocycline as a countermeasure against acute radiation syndrome. In Vivo, 2012, 26, 743-58.	0.6	5
79	Impact of total-body irradiation on the response to a live bacterial challenge. International Journal of Radiation Biology, 2014, 90, 515-526.	1.0	4
80	Impact of head-only iron ion radiation on the peripheral LPS response. In Vivo, 2011, 25, 903-16.	0.6	4
81	Effects of minocycline on hematopoietic recovery after whole-body irradiation. In Vivo, 2013, 27, 11-28.	0.6	4
82	A comparison of unamplified and massively multiplexed PCR amplification for murine antibody repertoire sequencing. FASEB BioAdvances, 2019, 1, 6-17.	1.3	3
83	A comparison of unamplified and massively multiplexed PCR amplification for murine antibody repertoire sequencing. FASEB BioAdvances, 2019, 1, 6-17.	1.3	3
84	An Analysis of the Effects of Spaceflight and Vaccination on Antibody Repertoire Diversity. ImmunoHorizons, 2021, 5, 675-686.	0.8	2
85	The effects of spaceflight and Insulin-like Growth Factor-1 on the T-cell and macrophage populations. , 1997, , .		1
86	Chlorisondamine, a sympathetic ganglionic blocker, moderates the effects of whole-body irradiation (WBI) on early host defense to a live bacterial challenge. Immunology Letters, 2015, 167, 103-115.	1.1	1
87	Low-dose radiation modifies skin response to acute gamma-rays and protons. In Vivo, 2013, 27, 695-700.	0.6	1
88	Acute Risks of Space Radiation. , 2019, , 1-11.		0
89	Acute Risks of Space Radiation. , 2021, , 263-276.		0
90	Acute Risks of Space Radiation. , 2020, , 1-11.		0

#	Article	IF	CITATIONS
91	Effects of Targeted Proton Radiation on Spinal Cord in a Porcine Model: A Pilot Study. In Vivo, 2015, 29, 651-9.	0.6	0