Arjun Raj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791714/publications.pdf

Version: 2024-02-01

90 papers	19,946 citations	46918 47 h-index	89 g-index
122	122	122	25280 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. Genome Biology, 2022, 23, 90.	3.8	13
2	Systematically quantifying morphological features reveals constraints on organoid phenotypes. Cell Systems, 2022, 13, 547-560.e3.	2.9	8
3	Variability within rare cell states enables multiple paths toward drug resistance. Nature Biotechnology, 2021, 39, 865-876.	9.4	94
4	p53 mediates target gene association with nuclear speckles for amplified RNA expression. Molecular Cell, 2021, 81, 1666-1681.e6.	4.5	41
5	Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity inÂvitro. Cell Systems, 2021, 12, 885-899.e8.	2.9	17
6	Genetic screening for single-cell variability modulators driving therapy resistance. Nature Genetics, 2021, 53, 76-85.	9.4	41
7	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 74-97.	1.8	3
8	Memory Sequencing Reveals Heritable Single-Cell Gene Expression Programs Associated with Distinct Cellular Behaviors. Cell, 2020, 182, 947-959.e17.	13.5	132
9	Social reprogramming in ants induces longevity-associated glia remodeling. Science Advances, 2020, 6, eaba9869.	4.7	46
10	Gene Networks with Transcriptional Bursting Recapitulate Rare Transient Coordinated High Expression States in Cancer. Cell Systems, 2020, 10, 363-378.e12.	2.9	54
11	Genetic Variation in Type 1 Diabetes Reconfigures the 3D Chromatin Organization of T Cells and Alters Gene Expression. Immunity, 2020, 52, 257-274.e11.	6.6	42
12	Gene regulation gravitates toward either addition or multiplication when combining the effects of two signals. ELife, 2020, 9, .	2.8	13
13	LADL: light-activated dynamic looping for endogenous gene expression control. Nature Methods, 2019, 16, 633-639.	9.0	108
14	Illuminating Genomic Dark Matter with RNA Imaging. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032094.	2.3	17
15	ClampFISH detects individual nucleic acid molecules using click chemistry–based amplification. Nature Biotechnology, 2019, 37, 84-89.	9.4	106
16	Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genetics, 2019, 15, e1007874.	1.5	52
17	Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation. Molecular Cell, 2019, 73, 519-532.e4.	4.5	118
18	Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discovery, 2019, 9, 64-81.	7.7	260

#	Article	IF	CITATIONS
19	Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH. Cell Systems, 2018, 6, 171-179.e5.	2.9	111
20	IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Research, 2018, 78, 4957-4970.	0.4	203
21	Gene expression distribution deconvolution in single-cell RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6437-E6446.	3.3	93
22	SAVER: gene expression recovery for single-cell RNA sequencing. Nature Methods, 2018, 15, 539-542.	9.0	574
23	Quanti.us: a tool for rapid, flexible, crowd-based annotation of images. Nature Methods, 2018, 15, 587-590.	9.0	50
24	Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature, 2017, 546, 431-435.	13.7	938
25	Visualizing adenosine-to-inosine RNA editing in single mammalian cells. Nature Methods, 2017, 14, 801-804.	9.0	33
26	The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries. Molecular Cell, 2017, 66, 102-116.e7.	4.5	114
27	FISHing Out the Details of CRISPR Genome Tracks. Biophysical Journal, 2017, 112, 1045-1046.	0.2	0
28	Molecular memoirs of a cellular family. Nature, 2017, 541, 38-39.	13.7	2
28	Molecular memoirs of a cellular family. Nature, 2017, 541, 38-39. Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882.	3.3	75
	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,		
29	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish	3.3	75
30	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nature Communications, 2017, 8, 799. Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a	3.3 5.8	75 58
29 30 31	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nature Communications, 2017, 8, 799. Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a Long Non-coding RNA. Immunity, 2017, 47, 435-449.e8. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nature Communications,	3.3 5.8 6.6	75 58 57
29 30 31 32	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nature Communications, 2017, 8, 799. Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a Long Non-coding RNA. Immunity, 2017, 47, 435-449.e8. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nature Communications, 2017, 8, 607.	3.3 5.8 6.6 5.8	75 58 57 109
30 31 32 33	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nature Communications, 2017, 8, 799. Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a Long Non-coding RNA. Immunity, 2017, 47, 435-449.e8. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nature Communications, 2017, 8, 607. Mitotic transcription and waves of gene reactivation during mitotic exit. Science, 2017, 358, 119-122. A magnetic micropore chip for rapid (<1 hour) unbiased circulating tumor cell isolation and in situ	3.3 5.8 6.6 5.8	75 58 57 109 201

#	Article	IF	CITATIONS
37	Nanoscale imaging of RNA with expansion microscopy. Nature Methods, 2016, 13, 679-684.	9.0	314
38	Single-cell differences in matrix gene expression do not predict matrix deposition. Nature Communications, 2016, 7, 10865.	5.8	43
39	Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. Molecular Cell, 2016, 62, 237-247.	4.5	296
40	The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature, 2016, 537, 239-243.	13.7	234
41	A hyperactive transcriptional state marks genome reactivation at the mitosis–G1 transition. Genes and Development, 2016, 30, 1423-1439.	2.7	92
42	What's Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism. Molecular Cell, 2016, 62, 788-802.	4.5	179
43	Overlapping cell population expression profiling and regulatory inference in C. elegans. BMC Genomics, 2016, 17, 159.	1.2	6
44	Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an $\langle i \rangle H19 \langle i \rangle$ loss-of-imprinting mutant. Genes and Development, 2016, 30, 567-578.	2.7	38
45	Transcriptional Bursting Explains the Noise–Versus–Mean Relationship in mRNA and Protein Levels. PLoS ONE, 2016, 11, e0158298.	1.1	60
46	Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation. Scientific Reports, 2015, 5, 13339.	1.6	21
47	Visualization of IncRNA by Single-Molecule Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2015, 1262, 3-19.	0.4	68
48	The Bicoid Class Homeodomain Factors ceh-36/OTX and unc-30/PITX Cooperate in C. elegans Embryonic Progenitor Cells to Regulate Robust Development. PLoS Genetics, 2015, 11, e1005003.	1.5	29
49	Multiplexed detection of viral infections using rapid in situ RNA analysis on a chip. Lab on A Chip, 2015, 15, 3170-3182.	3.1	22
50	Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biology, 2015, 16, 20.	3.8	565
51	Single Mammalian Cells Compensate for Differences in Cellular Volume and DNA Copy Number through Independent Global Transcriptional Mechanisms. Molecular Cell, 2015, 58, 339-352.	4.5	429
52	Half dozen of one, six billion of the other: What can small- and large-scale molecular systems biology learn from one another?. Genome Research, 2015, 25, 1466-1472.	2.4	19
53	Dynamic enhancer–gene body contacts during transcription elongation. Genes and Development, 2015, 29, 1992-1997.	2.7	72
54	Identification of a Natural Viral RNA Motif That Optimizes Sensing of Viral RNA by RIG-I. MBio, 2015, 6, e01265-15.	1.8	48

#	Article	IF	CITATIONS
55	Robust hematopoietic progenitor cell commitment in a noisy environment via suppression of a conflicting signal. Journal of Cell Science, 2015, 128, 3009-17.	1.2	3
56	Inhibition of intestinal tumor formation by deletion of the DNA methyltransferase 3a. Oncogene, 2015, 34, 1822-1830.	2.6	25
57	Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nature Structural and Molecular Biology, 2014, 21, 198-206.	3.6	565
58	Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood, 2014, 123, 1927-1937.	0.6	169
59	Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development (Cambridge), 2014, 141, 2770-2779.	1.2	120
60	Nup98 promotes antiviral gene expression to restrict RNA viral infection in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3890-9.	3.3	39
61	RNA sequencing in situ. Nature Biotechnology, 2014, 32, 543-544.	9.4	7
62	LincRNA-p21 Activates p21 In cis to Promote Polycomb Target Gene Expression and to Enforce the G1/S Checkpoint. Molecular Cell, 2014, 54, 777-790.	4.5	412
63	Tumor endothelial marker 1–specific DNA vaccination targets tumor vasculature. Journal of Clinical Investigation, 2014, 124, 1497-1511.	3.9	59
64	Visualizing SNVs to quantify allele-specific expression in single cells. Nature Methods, 2013, 10, 865-867.	9.0	100
65	Using variability in gene expression as a tool for studying gene regulation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 751-759.	6.6	26
66	Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493, 231-235.	13.7	810
67	Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nature Methods, 2013, 10, 246-248.	9.0	147
68	Gene transcription is coordinated with, but not dependent on, cell divisions during <i>C. elegans</i> embryonic fate specification. Development (Cambridge), 2013, 140, 3385-3394.	1.2	31
69	<i>linc-HOXA1</i> is a noncoding RNA that represses <i>Hoxa1</i> transcription in <i>cis</i> Genes and Development, 2013, 27, 1260-1271.	2.7	120
70	Quantitative assessment of ratiometric bimolecular beacons as a tool for imaging single engineered RNA transcripts and measuring gene expression in living cells. Nucleic Acids Research, 2013, 41, e152-e152.	6.5	24
71	Turbo FISH: A Method for Rapid Single Molecule RNA FISH. PLoS ONE, 2013, 8, e75120.	1.1	98
72	Hematopoietic Transcriptional Regulation At The Mitosis-G1 Transition. Blood, 2013, 122, 2440-2440.	0.6	0

#	Article	IF	Citations
73	Spo0Aâ^1/4P Imposes a Temporal Gate for the Bimodal Expression of Competence in Bacillus subtilis. PLoS Genetics, 2012, 8, e1002586.	1.5	44
74	Global Analysis of RNA Secondary Structure in Two Metazoans. Cell Reports, 2012, 1, 69-82.	2.9	126
75	Time-Lapse Transcription. Science, 2011, 332, 431-432.	6.0	1
76	Genes methylated by DNA methyltransferase 3b are similar in mouse intestine and human colon cancer. Journal of Clinical Investigation, 2011, 121, 1748-1752.	3.9	64
77	Single Molecule Imaging of RNA In Situ. Methods in Molecular Biology, 2011, 714, 3-13.	0.4	68
78	Variability in gene expression underlies incomplete penetrance. Nature, 2010, 463, 913-918.	13.7	607
79	Imaging Single mRNA Molecules in Yeast. Methods in Enzymology, 2010, 470, 429-446.	0.4	23
80	Detection of Individual Endogenous RNA Transcripts In Situ Using Multiple Singly Labeled Probes. Methods in Enzymology, 2010, 472, 365-386.	0.4	164
81	Single-Molecule Approaches to Stochastic Gene Expression. Annual Review of Biophysics, 2009, 38, 255-270.	4.5	317
82	Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11667-11672.	3.3	2,709
83	Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods, 2008, 5, 877-879.	9.0	1,770
84	Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell, 2008, 135, 216-226.	13.5	2,236
85	Noise in Gene Expression Determines Cell Fate in Bacillus subtilis. Science, 2007, 317, 526-529.	6.0	622
86	The influence of chromosome flexibility on chromosome transport during anaphase A. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5349-5354.	3.3	15
87	Stochastic mRNA Synthesis in Mammalian Cells. PLoS Biology, 2006, 4, e309.	2.6	1,528
88	Mechanism of mRNA transport in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17008-17013.	3.3	242
89	Wind survey of high-speed bulk flows and field-aligned beams in the near-Earth plasma sheet. Journal of Geophysical Research, 2002, 107, SMP 3-1-SMP 3-17.	3.3	86
90	The Finite Element Method on the Sierpinski Gasket. Constructive Approximation, 2001, 17, 561-588.	1.8	32