Shi Jin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379168/publications.pdf

Version: 2024-02-01

24 papers

1,865 citations

430874 18 h-index 24 g-index

24 all docs

24 docs citations

times ranked

24

3065 citing authors

#	Article	IF	CITATIONS
1	Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO ₂ for High-Performance Asymmetric Supercapacitors. ACS Nano, 2018, 12, 1033-1042.	14.6	436
2	Nickel-Manganese Layered Double Hydroxide Nanosheets Supported on Nickel Foam for High-performance Supercapacitor Electrode Materials. Electrochimica Acta, 2016, 194, 179-186.	5.2	208
3	Selfâ€Healing Materials for Nextâ€Generation Energy Harvesting and Storage Devices. Advanced Energy Materials, 2017, 7, 1700890.	19.5	206
4	Rational design of octahedron and nanowire CeO ₂ @MnO ₂ core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chemical Communications, 2015, 51, 14840-14843.	4.1	160
5	Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 594, 812-823.	9.4	123
6	Low-cost high-performance asymmetric supercapacitors based on Co ₂ AlO ₄ @MnO ₂ nanosheets and Fe ₃ O ₄ nanoflakes. Journal of Materials Chemistry A, 2016, 4, 2096-2104.	10.3	111
7	Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochimica Acta, 2016, 211, 627-635.	5.2	69
8	Facile synthesis of carbon-doped graphitic C ₃ N ₄ @MnO ₂ with enhanced electrochemical performance. RSC Advances, 2016, 6, 83209-83216.	3.6	62
9	Birnessite based nanostructures for supercapacitors: challenges, strategies and prospects. Nanoscale Advances, 2020, 2, 37-54.	4.6	61
10	Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes. Materials Letters, 2014, 135, 11-14.	2.6	55
11	Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors. Journal of Power Sources, 2015, 278, 555-561.	7.8	54
12	Mesoporous Ni-Doped $\hat{\Gamma}$ -Bi ₂ O ₃ Microspheres for Enhanced Solar-Driven Photocatalysis: A Combined Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2017, 121, 9394-9401.	3.1	49
13	Facile Synthesis of Flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 Nanocomposites for Supercapacitors. Electrochimica Acta, 2015, 168, 97-103.	5.2	46
14	Morphology-controlled MnO ₂ –graphene oxide–diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors. Dalton Transactions, 2016, 45, 936-942.	3.3	45
15	MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors. Materials Research Bulletin, 2014, 49, 448-453.	5.2	41
16	Low-Charge-Carrier-Scattering Three-Dimensional α-MnO ₂ /β-MnO ₂ Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.	5.1	30
17	Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2015, 26, 4212-4220.	2.2	24
18	Phase and morphology controlled polymorphic MnO2 nanostructures for electrochemical energy storage. CrystEngComm, 2019, 21, 5322-5331.	2.6	23

#	Article	IF	CITATIONS
19	Mask-painting symmetrical micro-supercapacitors based on scalable, pore size adjustable, N-doped hierarchical porous carbon. Journal of Materials Chemistry A, 2021, 9, 14052-14063.	10.3	19
20	Rational design of manganese dioxide decorated skeleton of colloidal mesoporous carbon nanocomposites for supercapacitors. Ceramics International, 2014, 40, 13381-13388.	4.8	12
21	High-rate asymmetrical supercapacitors based on cobalt-doped birnessite nanotubes and Mn-FeOOH nanotubes. Chemical Communications, 2020, 56, 3257-3260.	4.1	12
22	Fabrication of mesoporous gold networks@MnO2 for high-performance supercapacitors. Gold Bulletin, 2017, 50, 61-68.	2.4	10
23	High Mass Loading Asymmetric Micro-supercapacitors with Ultrahigh Areal Energy and Power Density. ACS Applied Materials & Density. ACS Applied Materials & Density. ACS Applied Materials & Density.	8.0	6
24	Ultrafast synthesis of Au(I)-dodecanethiolate nanotubes for advanced Hg2+ sensor electrodes. Nanoscale Research Letters, 2014, 9, 601.	5.7	3