Valina L Dawson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3791571/valina-l-dawson-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60,569 367 121 243 h-index g-index citations papers 68,465 412 11.2 7.47 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
367	Intracellular Signaling: Mediators and Protective Responses 2022 , 74-81.e5		
366	Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological Bynuclein <i>Cell Reports</i> , 2022 , 38, 110358	10.6	О
365	Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease <i>Science Advances</i> , 2022 , 8, eabh1824	14.3	O
364	STING mediates neurodegeneration and neuroinflammation in nigrostriatal Esynucleinopathy <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e211881911	9 ^{11.5}	5
363	A high-affinity cocaine binding site associated with the brain acid soluble protein 1 <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2200545119	11.5	O
362	Waiting for PARIS-A Biological Target in Search of a Drug. Journal of Parkinsong Disease, 2021,	5.3	1
361	Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-lassociated gene regulation. <i>Scientific Reports</i> , 2021 , 11, 21500	4.9	1
360	Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. <i>Pharmacological Reviews</i> , 2021 , 73, 33-97	22.5	2
359	TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson's disease. <i>Neuron</i> , 2021 , 109, 3758-3774.e11	13.9	1
358	Lymphocyte Activation Gene 3 (Lag3) Contributes to Esynucleinopathy in Esynuclein Transgenic Mice. Frontiers in Cellular Neuroscience, 2021 , 15, 656426	6.1	8
357	The cell biology of Parkinson's disease. <i>Journal of Cell Biology</i> , 2021 , 220,	7.3	15
356	AIF3 splicing switch triggers neurodegeneration. <i>Molecular Neurodegeneration</i> , 2021 , 16, 25	19	0
355	Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. <i>Acta Neuropathologica Communications</i> , 2021 , 9, 78	7.3	14
354	Targeting Parthanatos in Ischemic Stroke. Frontiers in Neurology, 2021, 12, 662034	4.1	3
353	Protocol for measurement of calcium dysregulation in human induced pluripotent stem cell-derived dopaminergic neurons. <i>STAR Protocols</i> , 2021 , 2, 100405	1.4	1
352	Mechanistic basis for receptor-mediated pathological Esynuclein fibril cell-to-cell transmission in Parkinson's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	13
351	Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. <i>ELife</i> , 2021 , 10,	8.9	6

(2020-2021)

350	Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in Esynuclein-Based Mouse Models of Parkinson's Disease. <i>Journal of Proteome Research</i> , 2021 , 20, 3428-3443	5.6	4
349	Nanozyme scavenging ROS for prevention of pathologic Esynuclein transmission in Parkinson disease. <i>Nano Today</i> , 2021 , 36, 101027	17.9	31
348	PARIS farnesylation prevents neurodegeneration in models of Parkinson's disease. <i>Science Translational Medicine</i> , 2021 , 13,	17.5	6
347	ADP-ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2021,	5.7	30
346	USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. <i>Nucleic Acids Research</i> , 2021 , 49, 11083-11102	20.1	1
345	Recent advances in preventing neurodegenerative diseases Faculty Reviews, 2021, 10, 81	1.2	1
344	AMPA Receptor Surface Expression Is Regulated by S-Nitrosylation of Thorase and Transnitrosylation of NSF. <i>Cell Reports</i> , 2020 , 33, 108329	10.6	4
343	Development of a novel method for the quantification of tyrosine 39 phosphorylated Eland Elynuclein in human cerebrospinal fluid. <i>Clinical Proteomics</i> , 2020 , 17, 13	5	2
342	Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. <i>International Review of Cell and Molecular Biology</i> , 2020 , 353, 1-29	6	26
341	PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. <i>Molecular Neurodegeneration</i> , 2020 , 15, 17	19	31
340	PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. <i>Molecular Neurodegeneration</i> , 2020 , 15, 20	19	111
339	Integration of Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons into Rat Brain Circuits. <i>Bio-protocol</i> , 2020 , 10, e3746	0.9	
338	Defects in mRNA Translation in LRRK2-Mutant hiPSC-Derived Dopaminergic Neurons Lead to Dysregulated Calcium Homeostasis. <i>Cell Stem Cell</i> , 2020 , 27, 633-645.e7	18	13
337	Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. <i>Cell Reports</i> , 2020 , 32, 107908	10.6	68
336	Determinants of seeding and spreading of Esynuclein pathology in the brain. <i>Science Advances</i> , 2020 , 6,	14.3	25
335	Microglia and astrocyte dysfunction in parkinson's disease. <i>Neurobiology of Disease</i> , 2020 , 144, 105028	7.5	59
334	Molecular Mediation of Prion-like Esynuclein Fibrillation from Toxic PFFs to Nontoxic Species <i>ACS Applied Bio Materials</i> , 2020 , 3, 6096-6102	4.1	1
333	Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons. <i>Stem Cell Reports</i> , 2020 , 15, 629-645	8	21

332	Quantitative mass spectrometric analysis of the mouse cerebral cortex after ischemic stroke. <i>PLoS ONE</i> , 2020 , 15, e0231978	3.7	4
331	Transneuronal Propagation of Pathologic Esynuclein from the Gut to the Brain Models Parkinson's Disease. <i>Neuron</i> , 2019 , 103, 627-641.e7	13.9	453
330	Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson's disease. <i>Brain</i> , 2019 , 142, 2380-2401	11.2	21
329	The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration. <i>Movement Disorders</i> , 2019 , 34, 959-969	7	37
328	Fyn kinase regulates misfolded Esynuclein uptake and NLRP3 inflammasome activation in microglia. <i>Journal of Experimental Medicine</i> , 2019 , 216, 1411-1430	16.6	85
327	Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis. <i>Acta Neuropathologica Communications</i> , 2019 , 7, 125	7.3	24
326	Neurons Derived from Human Induced Pluripotent Stem Cells Integrate into Rat Brain Circuits and Maintain Both Excitatory and Inhibitory Synaptic Activities. <i>ENeuro</i> , 2019 , 6,	3.9	9
325	Promising disease-modifying therapies for Parkinson's disease. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	22
324	Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. <i>Stem Cells Translational Medicine</i> , 2019 , 8, 112-123	6.9	28
323	The AAA + ATPase Thorase is neuroprotective against ischemic injury. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 1836-1848	7.3	5
322	Nitric Oxide Signaling in Neurodegeneration and Cell Death. <i>Advances in Pharmacology</i> , 2018 , 82, 57-83	5.7	41
321	DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Translational Psychiatry, 2018 , 8, 76	8.6	26
320	A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy. <i>Brain</i> , 2018 , 141, 651-661	11.2	26
319	Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1635-1640	11.5	45
318	Pathological Endogenous Esynuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. <i>Stem Cell Reports</i> , 2018 , 10, 356-365	8	40
317	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. <i>Cell Death and Differentiation</i> , 2018 , 25, 486-541	12.7	2160
316	GBA1 deficiency negatively affects physiological Esynuclein tetramers and related multimers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 798-803	11.5	106
315	Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. British Journal of Pharmacology, 2018 , 175, 192-222	8.6	120

314	Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms 2018, 3-17		2
313	Esynuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. <i>Molecular Neurodegeneration</i> , 2018 , 13, 1	19	63
312	Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. <i>Molecular Neurodegeneration</i> , 2018 , 13, 8	19	58
311	Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. <i>Nature Medicine</i> , 2018 , 24, 931-938	50.5	413
310	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. <i>Cell Death and Differentiation</i> , 2018 , 25, 542-572	12.7	64
309	Poly(ADP-ribose) drives pathologic Esynuclein neurodegeneration in Parkinson's disease. <i>Science</i> , 2018 , 362,	33.3	196
308	The PINK1 p.1368N Mutation Affects Protein Stability and Kinase Activity with Its Structural Change. <i>Juntendo Medical Journal</i> , 2018 , 64, 17-30	0.1	
307	Reply: ATAD1 encephalopathy and stiff baby syndrome: a recognizable clinical presentation. <i>Brain</i> , 2018 , 141, e50	11.2	1
306	Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning. <i>Neuron</i> , 2017 , 93, 425-440	13.9	31
305	Neurotoxic reactive astrocytes are induced by activated microglia. <i>Nature</i> , 2017 , 541, 481-487	50.4	2875
305	Neurotoxic reactive astrocytes are induced by activated microglia. <i>Nature</i> , 2017 , 541, 481-487 Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454	50.4	2875 88
	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of</i>		88
304	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454 PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. <i>Cell</i>	17.9	88
304	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454 PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. <i>Cell Reports</i> , 2017 , 18, 918-932 Precision therapy for a new disorder of AMPA receptor recycling due to mutations in. <i>Neurology:</i>	17.9	88
304 303 302	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454 PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. <i>Cell Reports</i> , 2017 , 18, 918-932 Precision therapy for a new disorder of AMPA receptor recycling due to mutations in. <i>Neurology: Genetics</i> , 2017 , 3, e130 The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. <i>Molecular</i>	17.9 10.6 3.8	88 101 27
304 303 302 301	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454 PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. <i>Cell Reports</i> , 2017 , 18, 918-932 Precision therapy for a new disorder of AMPA receptor recycling due to mutations in. <i>Neurology: Genetics</i> , 2017 , 3, e130 The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. <i>Molecular Neurodegeneration</i> , 2017 , 12, 32 Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive	17.9 10.6 3.8 19	88 101 27 37
304 303 302 301 300	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454 PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. <i>Cell Reports</i> , 2017 , 18, 918-932 Precision therapy for a new disorder of AMPA receptor recycling due to mutations in. <i>Neurology: Genetics</i> , 2017 , 3, e130 The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. <i>Molecular Neurodegeneration</i> , 2017 , 12, 32 Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson's disease genes. <i>Experimental Neurology</i> , 2017 , 298, 191-201	17.9 10.6 3.8 19	88 101 27 37 45

296	Activation mechanisms of the E3 ubiquitin ligase parkin. <i>Biochemical Journal</i> , 2017 , 474, 3075-3086	3.8	30
295	Toward the human cellular microRNAome. <i>Genome Research</i> , 2017 , 27, 1769-1781	9.7	95
294	Thorase variants are associated with defects in glutamatergic neurotransmission that can be rescued by Perampanel. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	12
293	Two approaches reveal a new paradigm of 'switchable or genetics-influenced allele-specific DNA methylation' with potential in human disease. <i>Cell Discovery</i> , 2017 , 3, 17038	22.3	18
292	Cell Death Mechanisms of Neurodegeneration. Advances in Neurobiology, 2017, 15, 403-425	2.1	68
291	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. <i>Brain</i> , 2017 , 140, 98-117	11.2	88
29 0	Augmentation of poly(ADP-ribose) polymerase-dependent neuronal cell death by acidosis. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2017 , 37, 1982-1993	7.3	17
289	c-Abl and Parkinson's Disease: Mechanisms and Therapeutic Potential. <i>Journal of Parkinson Disease</i> , 2017 , 7, 589-601	5.3	41
288	Overexpression of Parkinson's Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and Esynuclein Pathology. <i>ENeuro</i> , 2017 , 4,	3.9	19
287	Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. <i>Science Translational Medicine</i> , 2016 , 8, 333ra48	17.5	52
286	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
285	Intracellular Signaling: Mediators and Protective Responses 2016 , 80-89		
284	Activation of tyrosine kinase c-Abl contributes to Esynuclein-induced neurodegeneration. <i>Journal of Clinical Investigation</i> , 2016 , 126, 2970-88	15.9	88
283	Adult Conditional Knockout of PGC-1Leads to Loss of Dopamine Neurons. <i>ENeuro</i> , 2016 , 3,	3.9	61
282	High-Content Genome-Wide RNAi Screen Reveals as a Key Mediator of Neuronal Cell Death. <i>ENeuro</i> , 2016 , 3,	3.9	10
281	LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. <i>Journal of Chemical</i> <i>Neuroanatomy</i> , 2016 , 76, 90-97	3.2	29
280	Pathological Esynuclein transmission initiated by binding lymphocyte-activation gene 3. <i>Science</i> , 2016 , 353,	33.3	364
279	A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. <i>Science</i> , 2016 , 354,	33.3	165

(2014-2016)

278	LRRK2 pathobiology in Parkinson's disease - virtual inclusion. <i>Journal of Neurochemistry</i> , 2016 , 139 Suppl 1, 75-76	6	3
277	TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF. <i>Brain</i> , 2015 , 138, 3610-22	11.2	69
276	Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11696-701	11.5	149
275	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. <i>Cell Death and Differentiation</i> , 2015 , 22, 58-73	12.7	643
274	(Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. <i>EMBO Reports</i> , 2015 , 16, 1114-30	6.5	102
273	Lysosomal Enzyme Glucocerebrosidase Protects against All-42 Oligomer-Induced Neurotoxicity. <i>PLoS ONE</i> , 2015 , 10, e0143854	3.7	9
272	The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. <i>Scientific Reports</i> , 2014 , 4, 4874	4.9	145
271	MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. <i>Neuroscience</i> , 2014 , 268, 128-38	3.9	77
270	Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. <i>Cell</i> , 2014 , 157, 472-485	56.2	182
269	Parkin and PINK1: much more than mitophagy. <i>Trends in Neurosciences</i> , 2014 , 37, 315-24	13.3	258
268	Parkin plays a role in sporadic Parkinson's disease. <i>Neurodegenerative Diseases</i> , 2014 , 13, 69-71	2.3	62
267	Early-onset Parkinson's disease due to PINK1 p.Q456X mutationclinical and functional study. <i>Parkinsonism and Related Disorders</i> , 2014 , 20, 1274-8	3.6	25
266	Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. <i>EMBO Journal</i> , 2014 , 33, 2798-813	13	284
265	Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10209-14	11.5	203
264	Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. <i>Nature Communications</i> , 2014 , 5, 4930	17.4	87
263	Ganglioside regulation of AMPA receptor trafficking. <i>Journal of Neuroscience</i> , 2014 , 34, 13246-58	6.6	29
262	MiR-223 regulates the differentiation of immature neurons. <i>Molecular and Cellular Therapies</i> , 2014 , 2,		21
261	Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration. <i>Neurobiology of Disease</i> , 2014 , 71, 345-58	7.5	49

260	Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. <i>British Journal of Pharmacology</i> , 2014 , 171, 2000-16	8.6	298
259	Botch is a Eglutamyl cyclotransferase that deglycinates and antagonizes Notch. <i>Cell Reports</i> , 2014 , 7, 681-8	10.6	23
258	Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. <i>Human Molecular Genetics</i> , 2014 , 23, 2055-77	5.6	93
257	Abberant protein synthesis in G2019S LRRK2 Drosophila Parkinson disease-related phenotypes. <i>Fly</i> , 2014 , 8, 165-9	1.3	14
256	Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. <i>EMBO Journal</i> , 2014 , 33, 1548-64	13	113
255	Protein microarray characterization of the S-nitrosoproteome. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 63-72	7.6	49
254	LRRK2 pathobiology in Parkinson's disease. <i>Journal of Neurochemistry</i> , 2014 , 131, 554-65	6	113
253	Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. <i>Stem Cells Translational Medicine</i> , 2014 , 3, 888-98	6.9	30
252	Motor neuron death in ALS: programmed by astrocytes?. <i>Neuron</i> , 2014 , 81, 961-963	13.9	19
251	Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. <i>Nature Neuroscience</i> , 2013 , 16, 1392-400	25.5	142
250	Reprogramming cellular events by poly(ADP-ribose)-binding proteins. <i>Molecular Aspects of Medicine</i> , 2013 , 34, 1066-87	16.7	115
249	Usp16: key controller of stem cells in Down syndrome. <i>EMBO Journal</i> , 2013 , 32, 2788-9	13	5
248	New synaptic and molecular targets for neuroprotection in Parkinson's disease. <i>Movement Disorders</i> , 2013 , 28, 51-60	7	30
247	Sulfhydration mediates neuroprotective actions of parkin. <i>Nature Communications</i> , 2013 , 4, 1626	17.4	201
246	The interplay of microRNA and neuronal activity in health and disease. <i>Frontiers in Cellular Neuroscience</i> , 2013 , 7, 136	6.1	44
245	Identification through high-throughput screening of 4'-methoxyflavone and 3',4'-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos. <i>British Journal of Pharmacology</i> , 2013 , 169, 1263-78	8.6	31
244	LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization. <i>PLoS ONE</i> , 2013 , 8, e77198	3.7	51
243	Development and characterization of a new Parkinson's disease model resulting from impaired autophagy. <i>Journal of Neuroscience</i> , 2012 , 32, 16503-9	6.6	109

(2011-2012)

242	LRRK2 GTPase dysfunction in the pathogenesis of Parkinson's disease. <i>Biochemical Society Transactions</i> , 2012 , 40, 1074-9	5.1	21
241	MicroRNA-223 is neuroprotective by targeting glutamate receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18962-7	11.5	190
240	Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson's disease. <i>Trends in Pharmacological Sciences</i> , 2012 , 33, 365-73	13.2	62
239	Botch promotes neurogenesis by antagonizing Notch. <i>Developmental Cell</i> , 2012 , 22, 707-20	10.2	37
238	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. <i>Cell Death and Differentiation</i> , 2012 , 19, 107-20	12.7	1843
237	Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. <i>Science Translational Medicine</i> , 2012 , 4, 141ra90	17.5	381
236	ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. <i>Journal of Neuroscience</i> , 2012 , 32, 3877-86	6.6	81
235	Transcriptional responses to loss or gain of function of the leucine-rich repeat kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity. <i>Human Molecular Genetics</i> , 2012 , 21, 163-74	5.6	26
234	Animal models of Parkinson's disease: vertebrate genetics. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2012 , 2,	5.4	86
233	Neurodegenerative phenotypes in an A53T Esynuclein transgenic mouse model are independent of LRRK2. <i>Human Molecular Genetics</i> , 2012 , 21, 2420-31	5.6	69
232	Measuring the activity of leucine-rich repeat kinase 2: a kinase involved in Parkinson's disease. <i>Methods in Molecular Biology</i> , 2012 , 795, 45-54	1.4	2
231	Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson's disease-related toxicity in human neurons. <i>ACS Chemical Biology</i> , 2011 , 6, 1021-8	4.9	112
230	PARIS (ZNF746) repression of PGC-1L contributes to neurodegeneration in Parkinson's disease. <i>Cell</i> , 2011 , 144, 689-702	56.2	667
229	The AAA+ ATPase Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. <i>Cell</i> , 2011 , 145, 284-99	56.2	67
228	Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). <i>Science Signaling</i> , 2011 , 4, ra20	8.8	286
227	MicroRNAs in Parkinson's disease. <i>Journal of Chemical Neuroanatomy</i> , 2011 , 42, 127-30	3.2	95
226	Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. <i>PLoS ONE</i> , 2011 , 6, e18568	3.7	297
225	Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. <i>Nature Medicine</i> , 2011 , 17, 692-9	50.5	157

224	Recent advances in the genetics of Parkinson's disease. <i>Annual Review of Genomics and Human Genetics</i> , 2011 , 12, 301-25	9.7	301
223	Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 14103-8	11.5	162
222	A lysosomal lair for a pathogenic protein pair. Science Translational Medicine, 2011, 3, 91ps28	17.5	9
221	Enhanced autophagy from chronic toxicity of iron and mutant A53T Esynuclein: implications for neuronal cell death in Parkinson disease. <i>Journal of Biological Chemistry</i> , 2011 , 286, 33380-9	5.4	68
220	Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson's disease models. <i>Human Molecular Genetics</i> , 2011 , 20, 3933-42	5.6	107
219	Resistance to MPTP-neurotoxicity in Bynuclein knockout mice is complemented by human Bynuclein and associated with increased Bynuclein and Akt activation. <i>PLoS ONE</i> , 2011 , 6, e16706	3.7	50
218	Neuronal activity regulates hippocampal miRNA expression. <i>PLoS ONE</i> , 2011 , 6, e25068	3.7	45
217	Intracellular Signaling: Mediators and Protective Responses 2011 , 154-161		
216	Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. <i>Journal of Neurochemistry</i> , 2010 , 113, 1012-22	6	44
215	Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. <i>Nature Medicine</i> , 2010 , 16, 998-1000	50.5	303
214	NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice. <i>Journal of Clinical Investigation</i> , 2010 , 120, 2446-56	15.9	39
213	Reevaluation of phosphorylation sites in the Parkinson disease-associated leucine-rich repeat kinase 2. <i>Journal of Biological Chemistry</i> , 2010 , 285, 29569-76	5.4	42
212	Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16	6 9 1-&	199
211	PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 378-83	11.5	1199
210	Endonuclease G does not play an obligatory role in poly(ADP-ribose) polymerase-dependent cell death after transient focal cerebral ischemia. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2010 , 299, R215-21	3.2	15
209	GTPase activity plays a key role in the pathobiology of LRRK2. <i>PLoS Genetics</i> , 2010 , 6, e1000902	6	163
208	The impact of genetic research on our understanding of Parkinson's disease. <i>Progress in Brain Research</i> , 2010 , 183, 21-41	2.9	26
207	Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. <i>Stroke</i> , 2010 , 41, S64-71	6.7	20

206	Genetic animal models of Parkinson's disease. <i>Neuron</i> , 2010 , 66, 646-61	13.9	602
205	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9	7	253
204	Functional identification of neuroprotective molecules. <i>PLoS ONE</i> , 2010 , 5, e15008	3.7	26
203	Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms 2010, 79-88		О
202	S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4900-5	11.5	123
201	CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2897-902	11.5	160
200	Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. <i>Journal of Neuroscience</i> , 2009 , 29, 11257-62	6.6	165
199	Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. <i>ASN Neuro</i> , 2009 , 1,	5.3	59
198	Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. <i>Free Radical Biology and Medicine</i> , 2009 , 47, 1049-56	7.8	49
197	Conditional transgenic mice expressing C-terminally truncated human alpha-synuclein (alphaSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. <i>Molecular Neurodegeneration</i> , 2009 , 4, 34	19	65
196	Understanding microRNAs in neurodegeneration. <i>Nature Reviews Neuroscience</i> , 2009 , 10, 837-41	13.5	226
195	Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). <i>Journal of Neurochemistry</i> , 2009 , 110, 687-96	6	77
194	Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). <i>Journal of Neuroscience</i> , 2009 , 29, 15846-50	6.6	103
193	Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. <i>Experimental Neurology</i> , 2009 , 218, 193-202	5.7	264
192	SnapShot: pathogenesis of Parkinson's disease. <i>Cell</i> , 2009 , 139, 440.e1-2	56.2	12
191	Abnormal localization of leucine-rich repeat kinase 2 to the endosomal-lysosomal compartment in lewy body disease. <i>Journal of Neuropathology and Experimental Neurology</i> , 2009 , 68, 994-1005	3.1	65
190	Parthanatos, a messenger of death. Frontiers in Bioscience - Landmark, 2009, 14, 1116-28	2.8	259
189	What causes cell death in Parkinson's disease?. <i>Annals of Neurology</i> , 2008 , 64 Suppl 2, S3-15	9.4	71

188	Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. <i>Nature Cell Biology</i> , 2008 , 10, 866-73	23.4	307
187	Parkin mediates the degradation-independent ubiquitination of Hsp70. <i>Journal of Neurochemistry</i> , 2008 , 105, 1806-19	6	81
186	Autophagy-mediated clearance of aggresomes is not a universal phenomenon. <i>Human Molecular Genetics</i> , 2008 , 17, 2570-82	5.6	130
185	Advances in neuronal cell death 2007. Stroke, 2008, 39, 286-8	6.7	25
184	Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. <i>Autophagy</i> , 2008 , 4, 251-253	10.2	48
183	The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. <i>Journal of Neuroscience</i> , 2008 , 28, 3384-91	6.6	158
182	Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. <i>Nucleic Acids Research</i> , 2008 , 36, 6959-76	20.1	298
181	Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. <i>Human Molecular Genetics</i> , 2008 , 17, 431-9	5.6	330
180	Mitochondrial and nuclear cross talk in cell death: parthanatos. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1147, 233-41	6.5	222
179	Genetic Models of Familial Parkinson's Disease 2008 , 225-236		
179 178	Genetic Models of Familial Parkinson's Disease 2008, 225-236 Parthanatos 2008, 143-156		O
		6	0 88
178	Parthanatos 2008 , 143-156 Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the	6	
178 177	Parthanatos 2008, 143-156 Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. <i>Journal of Neurochemistry</i> , 2007, 100, 368-81		88
178 177 176	Parthanatos 2008, 143-156 Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. <i>Journal of Neurochemistry</i> , 2007, 100, 368-81 Dynamic and redundant regulation of LRRK2 and LRRK1 expression. <i>BMC Neuroscience</i> , 2007, 8, 102 Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. <i>Brain</i>	3.2	121
178 177 176	Parthanatos 2008, 143-156 Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. <i>Journal of Neurochemistry</i> , 2007, 100, 368-81 Dynamic and redundant regulation of LRRK2 and LRRK1 expression. <i>BMC Neuroscience</i> , 2007, 8, 102 Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. <i>Brain Research</i> , 2007, 1155, 208-19 MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons	3.2	88 121 125
178 177 176 175	Parthanatos 2008, 143-156 Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. <i>Journal of Neurochemistry</i> , 2007, 100, 368-81 Dynamic and redundant regulation of LRRK2 and LRRK1 expression. <i>BMC Neuroscience</i> , 2007, 8, 102 Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. <i>Brain Research</i> , 2007, 1155, 208-19 MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity. <i>Neurobiology of Disease</i> , 2007, 26, 312-22 Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. <i>Journal of</i>	3.2 3.7 7.5	88 121 125 58

(2006-2007)

170	Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. <i>Journal of Biological Chemistry</i> , 2007 , 282, 12310-8	5.4	71
169	Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. <i>Human Molecular Genetics</i> , 2007 , 16, 223-32	5.6	466
168	Parkinson's disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2- and Sin-1-induced cell death. <i>Neurobiology of Aging</i> , 2007 , 28, 1709-17	5.6	47
167	Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. <i>Neuroscience</i> , 2007 , 144, 56-65	3.9	37
166	Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain. <i>Neuroscience</i> , 2007 , 148, 198-211	3.9	32
165	Role of nitric oxide in Parkinson's disease 2006 , 109, 33-41		127
164	Localization of LRRK2 to membranous and vesicular structures in mammalian brain. <i>Annals of Neurology</i> , 2006 , 60, 557-69	9.4	429
163	Neuroprotection by pharmacologic blockade of the GAPDH death cascade. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3887-9	11.5	200
162	Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 18314-9	11.5	571
161	Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. <i>Journal of Biological Chemistry</i> , 2006 , 281, 16193-6	5.4	84
160	Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. <i>Journal of Neuroscience</i> , 2006 , 26, 3685-96	6.6	72
159	Poly(ADP-ribose) (PAR) polymer is a death signal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 18308-13	11.5	494
158	Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases?. <i>Neurobiology of Aging</i> , 2006 , 27, 524-9	5.6	114
157	Diagnosis and treatment of Parkinson disease: molecules to medicine. <i>Journal of Clinical Investigation</i> , 2006 , 116, 1744-54	15.9	461
156	Mining for survival genes. <i>Biochemical Society Transactions</i> , 2006 , 34, 1307-9	5.1	4
155	Kinase activity of mutant LRRK2 mediates neuronal toxicity. <i>Nature Neuroscience</i> , 2006 , 9, 1231-3	25.5	540
154	EndoG is dispensable in embryogenesis and apoptosis. Cell Death and Differentiation, 2006, 13, 1147-55	12.7	66
153	Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2006 , 26, 135-41	7.3	54

152	Lessons from Drosophila models of DJ-1 deficiency. <i>Science of Aging Knowledge Environment: SAGE KE</i> , 2006 , 2006, pe2		26
151	Ubiquitination by Parkin Implications in Parkinson Disease 2006 , 213-224		
150	PARP and the Release of Apoptosis-Inducing Factor from Mitochondria 2006 , 103-117		3
149	The road to survival goes through PARG. <i>Cell Cycle</i> , 2005 , 4, 397-9	4.7	17
148	Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. <i>Human Molecular Genetics</i> , 2005 , 14, 3885-97	5.6	176
147	Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. <i>Human Molecular Genetics</i> , 2005 , 14, 2063-73	5.6	348
146	Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. <i>Journal of Neuroscience</i> , 2005 , 25, 5544-52	6.6	202
145	Molecular pathophysiology of Parkinson's disease. <i>Annual Review of Neuroscience</i> , 2005 , 28, 57-87	17	982
144	Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16842-7	11.5	933
143	Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease. <i>Molecular Brain Research</i> , 2005 , 134, 103-8		55
142	To die or grow: Parkinson's disease and cancer. <i>Trends in Neurosciences</i> , 2005 , 28, 348-52	13.3	91
141	Recent advances in our understanding of Parkinson's disease. <i>Drug Discovery Today Disease Mechanisms</i> , 2005 , 2, 427-433		12
140	Mediation of cell death by poly(ADP-ribose) polymerase-1. <i>Pharmacological Research</i> , 2005 , 52, 5-14	10.2	199
139	Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. <i>Human Molecular Genetics</i> , 2005 , 14, 3801-11	5.6	288
138	The involvement of nitric oxide in the enhanced expression of mu-opioid receptors during intestinal inflammation in mice. <i>British Journal of Pharmacology</i> , 2005 , 145, 758-66	8.6	28
137	The role of nitric oxide and PARP in neuronal cell death 2005 , 146-156		
136	Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. <i>Human Molecular Genetics</i> , 2005 , 14, 2571-86	5.6	183
135	Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. <i>Human Molecular Genetics</i> , 2005 , 14, 71-84	5.6	218

134	Comment on "S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function". <i>Science</i> , 2005 , 308, 1870; author reply 1870	33.3	20
133	Bcl-x is required for proper development of the mouse substantia nigra. <i>Journal of Neuroscience</i> , 2005 , 25, 6721-8	6.6	103
132	S-nitrosylation in Parkinson's disease and related neurodegenerative disorders. <i>Methods in Enzymology</i> , 2005 , 396, 139-50	1.7	33
131	Identification and evaluation of NO-regulated genes by differential analysis of primary cDNA library expression (DAzLE). <i>Methods in Enzymology</i> , 2005 , 396, 359-68	1.7	1
130	Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 18676-81	11.5	359
129	Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. <i>Journal of Neuroscience</i> , 2005 , 25, 2002-9	6.6	431
128	Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. <i>Journal of Neuroscience</i> , 2005 , 25, 7968-78	6.6	204
127	Genetics Of Parkinson⊠ Disease. <i>Neurological Disease and Therapy</i> , 2005 , 611-631		
126	Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 17699-704	11.5	260
125	Loss of locus coeruleus neurons and reduced startle in parkin null mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10744-9	11.5	275
124	Identification of calcium- and nitric oxide-regulated genes by differential analysis of library expression (DAzLE). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 647-52	11.5	30
123	BAD is a pro-survival factor prior to activation of its pro-apoptotic function. <i>Journal of Biological Chemistry</i> , 2004 , 279, 42240-9	5.4	39
122	Identification and analysis of plasticity-induced late-response genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 2145-50	11.5	54
121	Role of AIF in caspase-dependent and caspase-independent cell death. <i>Oncogene</i> , 2004 , 23, 2785-96	9.2	441
120	PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. <i>Journal of Neurochemistry</i> , 2004 , 90, 1068-75	6	233
119	Deadly conversations: nuclear-mitochondrial cross-talk. <i>Journal of Bioenergetics and Biomembranes</i> , 2004 , 36, 287-94	3.7	146
118	Parkin-associated Parkinson's disease. <i>Cell and Tissue Research</i> , 2004 , 318, 175-84	4.2	116
117	Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. <i>Hepatology</i> , 2004 , 39, 403-11	11.2	124

116	S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. <i>Science</i> , 2004 , 304, 1328-31	33.3	656
115	Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. <i>Journal of Neuroscience</i> , 2004 , 24, 10963-73	6.6	240
114	Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. <i>Trends in Pharmacological Sciences</i> , 2004 , 25, 259-64	13.2	386
113	Genomics-Proteomics and Stroke: Introduction. <i>Stroke</i> , 2004 , 35, 2731-2734	6.7	1
112	What have genetically engineered mice taught us about ischemic injury?. <i>Current Molecular Medicine</i> , 2004 , 4, 207-25	2.5	14
111	Intracellular Signaling: Mediators and Protective Responses 2004 , 895-902		
110	The cast of molecular characters in Parkinson's disease: felons, conspirators, and suspects. <i>Annals of the New York Academy of Sciences</i> , 2003 , 991, 80-92	6.5	32
109	Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. <i>Annals of the New York Academy of Sciences</i> , 2003 , 991, 132-9	6.5	101
108	Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. <i>Journal of Biological Chemistry</i> , 2003 , 278, 48120-8	5.4	123
107	Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. <i>Journal of Biological Chemistry</i> , 2003 , 278, 13047-55	5.4	68
106	Role for the ubiquitin-proteasome system in Parkinson's disease and other neurodegenerative brain amyloidoses. <i>NeuroMolecular Medicine</i> , 2003 , 4, 95-108	4.6	47
105	New insights into Parkinson's disease. <i>Journal of Neurology</i> , 2003 , 250 Suppl 3, III15-24	5.5	32
104	Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxicity. <i>European Journal of Neuroscience</i> , 2003 , 18, 1402-9	3.5	34
103	A missense mutation (L166P) in DJ-1, linked to familial Parkinson's disease, confers reduced protein stability and impairs homo-oligomerization. <i>Journal of Neurochemistry</i> , 2003 , 87, 1558-67	6	173
102	Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. <i>Neurobiology of Disease</i> , 2003 , 14, 303-17	7.5	165
101	Poly (ADP-ribose) polymerase and brain ischemia. <i>International Congress Series</i> , 2003 , 1252, 21-29		
100	Molecular pathways of neurodegeneration in Parkinson's disease. <i>Science</i> , 2003 , 302, 819-22	33.3	1382
99	37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. <i>Journal of Biological Chemistry</i> , 2003 , 278, 16857-62	5.4	96

(2001-2003)

98	Rare genetic mutations shed light on the pathogenesis of Parkinson disease. <i>Journal of Clinical Investigation</i> , 2003 , 111, 145-51	15.9	61
97	Rare genetic mutations shed light on the pathogenesis of Parkinson disease. <i>Journal of Clinical Investigation</i> , 2003 , 111, 145-151	15.9	152
96	Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. <i>Stroke</i> , 2002 , 33, 1101-6	6.7	117
95	The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-46	6.6	27
94	A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. Journal of Neurochemistry, 2002 , 83, 186-92	6	67
93	Neuroprotective and neurorestorative strategies for Parkinson's disease. <i>Nature Neuroscience</i> , 2002 , 5 Suppl, 1058-61	25.5	139
92	The orphan nuclear receptor, steroidogenic factor 1, regulates neuronal nitric oxide synthase gene expression in pituitary gonadotropes. <i>Molecular Endocrinology</i> , 2002 , 16, 2828-39		24
91	Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. <i>Journal of Cell Biology</i> , 2002 , 158, 507-17	7.3	405
90	Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. <i>Science</i> , 2002 , 297, 259-63	33.3	1508
89	Mechanisms of ischemic tolerance 2002 , 58-71		
89 88	Mechanisms of ischemic tolerance 2002, 58-71 Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. Stroke, 2001, 32, 1613-20	6.7	77
	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is	6.7	77
88	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. <i>Stroke</i> , 2001 , 32, 1613-20 Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage	,	
88 8 ₇	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. <i>Stroke</i> , 2001 , 32, 1613-20 Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA. <i>Journal of Neurochemistry</i> , 2001 , 76, 1386-94 Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain	6	7
88 87 86	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. <i>Stroke</i> , 2001 , 32, 1613-20 Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA. <i>Journal of Neurochemistry</i> , 2001 , 76, 1386-94 Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. <i>European Journal of Neuroscience</i> , 2001 , 13, 1683-93 Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. <i>Annals of Neurology</i> ,	6 3.5	7 69
88 87 86 85	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. <i>Stroke</i> , 2001 , 32, 1613-20 Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA. <i>Journal of Neurochemistry</i> , 2001 , 76, 1386-94 Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. <i>European Journal of Neuroscience</i> , 2001 , 13, 1683-93 Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. <i>Annals of Neurology</i> , 2001 , 50, 6-16 Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body	6 3·5 9·4	7 69 75
88 87 86 85 84	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. <i>Stroke</i> , 2001 , 32, 1613-20 Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA. <i>Journal of Neurochemistry</i> , 2001 , 76, 1386-94 Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. <i>European Journal of Neuroscience</i> , 2001 , 13, 1683-93 Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. <i>Annals of Neurology</i> , 2001 , 50, 6-16 Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. <i>Nature Medicine</i> , 2001 , 7, 1144-50	6 3·5 9·4	7 69 75 643

80	The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. <i>Trends in Neurosciences</i> , 2001 , 24, S7-14	13.3	158
79	The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. <i>Trends in Neurosciences</i> , 2001 , 24, 7-14	13.3	151
78	Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. <i>Science</i> , 2001 , 291, 2423-8	33.3	944
77	Overview of the pathway and functions of nitric oxide. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2001 , Chapter 10, Unit 10.1	1	
76	Histochemical analysis of nitric oxide synthase by NADPH diaphorase staining. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2001 , Chapter 10, Unit 10.6	1	5
75	Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 127	7 ¹ 87	92
74	NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase. <i>Journal of Neuroscience</i> , 2000 , 20, 8005-11	6.6	194
73	Stroke outcome in double-mutant antioxidant transgenic mice. <i>Stroke</i> , 2000 , 31, 2685-91	6.7	42
72	Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 436-41	11.5	298
71	Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 13354-9	11.5	835
70	Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 8617-22	11.5	149
69	Oxidative stress and genetics in the pathogenesis of Parkinson's disease. <i>Neurobiology of Disease</i> , 2000 , 7, 240-50	7.5	371
68	Neuronal ischaemic preconditioning. <i>Trends in Pharmacological Sciences</i> , 2000 , 21, 423-4	13.2	51
67	Influence of Nitric Oxide on Neuroendocrine Function and Behavior 2000 , 429-438		3
66	Neurotoxic Actions and Mechanisms of Nitric Oxide 2000 , 695-710		4
65	In vitro and in vivo effects of genistein on murine alveolar macrophage TNF alpha production. <i>Cellular and Molecular Neurobiology</i> , 1999 , 23, 231-9	4.6	205
64	Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 5774-9	11.5	333
63	Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. <i>Nature Medicine</i> , 1999 , 5, 1403-9	50.5	906

62	Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. <i>Nature Genetics</i> , 1999 , 22, 110-4	36.3	440
61	Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 1999 , 1455, 23-34	4 ^{6.9}	113
60	Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. <i>Neuroscience</i> , 1999 , 90, 1483-92	3.9	79
59	Glutamate-stimulated calcium activation of Ras/Erk pathway mediated by nitric oxide. <i>Diabetes Research and Clinical Practice</i> , 1999 , 45, 113-5	7.4	31
58	Nuclear targeting of mutant Huntingtin increases toxicity. <i>Molecular and Cellular Neurosciences</i> , 1999 , 14, 121-8	4.8	166
57	Neuroprotective FK506 does not alter in vivo nitric oxide production during ischemia and early reperfusion in rats. <i>Stroke</i> , 1999 , 30, 1279-85	6.7	54
56	Free radicals as mediators of neuronal injury. Cellular and Molecular Neurobiology, 1998, 18, 667-82	4.6	187
55	Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. <i>Human Molecular Genetics</i> , 1998 , 7, 783-90	5.6	269
54	mdx muscle pathology is independent of nNOS perturbation. <i>Human Molecular Genetics</i> , 1998 , 7, 823-9	5.6	94
53	Nitric oxide in neurodegeneration. <i>Progress in Brain Research</i> , 1998 , 118, 215-29		296
		2.9	290
52	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8	11.5	183
52 51	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of</i>	11.5	
	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8	11.5	183
51	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8 Nitric Oxide: Diverse Actions in the Central and Peripheral Nervous Systems. <i>Neuroscientist</i> , 1998 , 4, 96- Impaired Ovulation in Mice with Targeted Deletion of the Neuronal Isoform of Nitric Oxide	11.5 -1/1@	183
50	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8 Nitric Oxide: Diverse Actions in the Central and Peripheral Nervous Systems. <i>Neuroscientist</i> , 1998 , 4, 96- Impaired Ovulation in Mice with Targeted Deletion of the Neuronal Isoform of Nitric Oxide Synthase. <i>Molecular Medicine</i> , 1998 , 4, 658-664 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated	11.5 -1/12 6.2	183 19 20
50 49	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8 Nitric Oxide: Diverse Actions in the Central and Peripheral Nervous Systems. <i>Neuroscientist</i> , 1998 , 4, 96- Impaired Ovulation in Mice with Targeted Deletion of the Neuronal Isoform of Nitric Oxide Synthase. <i>Molecular Medicine</i> , 1998 , 4, 658-664 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. <i>Journal of Neuroscience</i> , 1998 , 18, 2040-55 Neuronal (type I) nitric oxide synthase regulates nuclear factor kappaB activity and immunologic (type II) nitric oxide synthase expression. <i>Proceedings of the National Academy of Sciences of the</i>	11.5 -1/12 6.2	183 19 20 239
51 50 49 48	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8 Nitric Oxide: Diverse Actions in the Central and Peripheral Nervous Systems. <i>Neuroscientist</i> , 1998 , 4, 96- Impaired Ovulation in Mice with Targeted Deletion of the Neuronal Isoform of Nitric Oxide Synthase. <i>Molecular Medicine</i> , 1998 , 4, 658-664 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. <i>Journal of Neuroscience</i> , 1998 , 18, 2040-55 Neuronal (type I) nitric oxide synthase regulates nuclear factor kappaB activity and immunologic (type II) nitric oxide synthase expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 2676-80 Differential susceptibility to neurotoxicity mediated by neurotrophins and neuronal nitric oxide	11.5 -1/1@ 6.2 6.6	183 19 20 239

44	Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. <i>Nature Medicine</i> , 1997 , 3, 1089-95	50.5	923
43	Aggressive behavior in male mice lacking the gene for neuronal nitric oxide synthase requires testosterone. <i>Brain Research</i> , 1997 , 769, 66-70	3.7	58
42	Effects of nitric oxide on neuroendocrine function and behavior. <i>Frontiers in Neuroendocrinology</i> , 1997 , 18, 463-91	8.9	90
41	Nitric oxide synthase in models of focal ischemia. <i>Stroke</i> , 1997 , 28, 1283-8	6.7	515
40	Nitric oxide in neuronal degeneration. Experimental Biology and Medicine, 1996, 211, 33-40	3.7	107
39	Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. <i>Annual Review of Medicine</i> , 1996 , 47, 219-27	17.4	133
38	Nitric oxide neurotoxicity. <i>Journal of Chemical Neuroanatomy</i> , 1996 , 10, 179-90	3.2	422
37	Nitric oxide actions in neurochemistry. <i>Neurochemistry International</i> , 1996 , 29, 97-110	4.4	157
36	Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. <i>Science</i> , 1996 , 274, 1917-21	33.3	369
35	Nitric Oxide Synthase Inhibitors. <i>CNS Drugs</i> , 1996 , 6, 351-357	6.7	5
35 34	Nitric Oxide Synthase Inhibitors. <i>CNS Drugs</i> , 1996 , 6, 351-357 NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67	6.7	5
		6.7	
34	NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67	6.7	2
34	NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67 Function of Nitric Oxide in Neuronal Cell Death. <i>Methods in Neurosciences</i> , 1996 , 228-240	6.7	2
34 33 32	NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67 Function of Nitric Oxide in Neuronal Cell Death. <i>Methods in Neurosciences</i> , 1996 , 228-240 Nitric Oxide Toxicity in Central Nervous System Cultures. <i>Methods in Neurosciences</i> , 1996 , 30, 26-43 Generation of isoform-specific antibodies to nitric oxide synthases. <i>Methods in Enzymology</i> , 1996 ,		2 1 2
34 33 32 31	NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67 Function of Nitric Oxide in Neuronal Cell Death. <i>Methods in Neurosciences</i> , 1996 , 228-240 Nitric Oxide Toxicity in Central Nervous System Cultures. <i>Methods in Neurosciences</i> , 1996 , 30, 26-43 Generation of isoform-specific antibodies to nitric oxide synthases. <i>Methods in Enzymology</i> , 1996 , 268, 349-58 Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 ,	1.7	2 2 2
34 33 32 31 30	NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67 Function of Nitric Oxide in Neuronal Cell Death. <i>Methods in Neurosciences</i> , 1996 , 228-240 Nitric Oxide Toxicity in Central Nervous System Cultures. <i>Methods in Neurosciences</i> , 1996 , 30, 26-43 Generation of isoform-specific antibodies to nitric oxide synthases. <i>Methods in Enzymology</i> , 1996 , 268, 349-58 Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 5037-42	1.7	2 1 2 2 129

26	Nitric oxide: role in neurotoxicity. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 305	5-83	109
25	REVIEW ?: Nitric Oxide: Actions and Pathological Roles. <i>Neuroscientist</i> , 1995 , 1, 7-18	7.6	94
24	Physiological and toxicological actions of nitric oxide in the central nervous system. <i>Advances in Pharmacology</i> , 1995 , 34, 323-42	5.7	52
23	Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. <i>Annals of Neurology</i> , 1995 , 37, 115-8	9.4	63
22	Nitric Oxide Neurotoxicity in Primary Neuronal Cultures 1995 , 3-15		
21	Molecular mechanisms of nitric oxide actions in the brain. <i>Annals of the New York Academy of Sciences</i> , 1994 , 738, 76-85	6.5	91
20	Receptor alterations in subcortical structures after bilateral middle cerebral artery infarction of the cerebral cortex. <i>Experimental Neurology</i> , 1994 , 128, 88-96	5.7	13
19	Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. <i>Neuropharmacology</i> , 1994 , 33, 1245-51	5.5	126
18	Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. <i>Neuropharmacology</i> , 1994 , 33, 1425-30	5.5	232
17	gp120 neurotoxicity in primary cortical cultures. Advances in Neuroimmunology, 1994 , 4, 167-73		21
16	Alterations in cortical muscarinic receptors following cholinotoxin (AF64A) lesion of the rat nucleus basalis magnocellularis. <i>Neurobiology of Aging</i> , 1992 , 13, 25-32	5.6	21
15	A novel neuronal messenger molecule in brain: the free radical, nitric oxide. <i>Annals of Neurology</i> , 1992 , 32, 297-311	9.4	768
14	Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra. <i>Experimental Neurology</i> , 1991 , 111, 282-92	5.7	54
13	Downregulation of muscarinic receptors in the rat caudate-putamen after lesioning of the ipsilateral nigrostriatal dopamine pathway with 6-hydroxydopamine (6-OHDA): normalization by fetal mesencephalic transplants. <i>Brain Research</i> , 1991 , 540, 145-52	3.7	21
12	Reversal of nigrostriatal-lesion-induced receptor alterations by grafting of fetal mesencephalic dopaminergic neurons. <i>Advances in Experimental Medicine and Biology</i> , 1991 , 287, 221-35	3.6	
11	Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor. <i>Neuron</i> , 1990 , 5, 199-208	13.9	166
10	Hippocampal muscarinic supersensitivity after AF64A medial septal lesion excludes M1 receptors. <i>Brain Research Bulletin</i> , 1990 , 25, 311-7	3.9	16
9	Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons. <i>Brain Research Bulletin</i> , 1990 , 25, 903-12	3.9	34

8	Normalization of subtype-specific muscarinic receptor binding in the denervated hippocampus by septodiagonal band grafts. <i>Experimental Neurology</i> , 1989 , 106, 115-24	5.7	61
7	Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen. <i>Life Sciences</i> , 1988 , 42, 1933-9	6.8	72
6	Parkin and Neurodegeneration211-236		
5	Experience-dependent translational state defined by cell type-specific ribosome profiling		1
4	Complement and coagulation cascades are potentially involved in dopaminergic neurodegeneration in Bynuclein-based mouse models of Parkinson disease		2
3	Host regulator PARP1 contributes to sex differences and immune responses in a mouse model of tub	erculosi	S 1
2	Aplp1 and the Aplp1-Lag3 Complex facilitates transmission of pathologic Esynuclein		3
1	Parkin and Neurodegeneration211-236		