Valina L Dawson

List of Publications by Citations

Source: https://exaly.com/author-pdf/3791571/valina-l-dawson-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

367 papers 60,569 citations

121 h-index 243 g-index

412 ext. papers

68,465 ext. citations

11.2 avg, IF

7.47 L-index

#	Paper	IF	Citations
367	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
366	Neurotoxic reactive astrocytes are induced by activated microglia. <i>Nature</i> , 2017 , 541, 481-487	50.4	2875
365	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. <i>Cell Death and Differentiation</i> , 2018 , 25, 486-541	12.7	2160
364	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. <i>Cell Death and Differentiation</i> , 2012 , 19, 107-20	12.7	1843
363	Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. <i>Science</i> , 2002 , 297, 259-63	33.3	1508
362	Molecular pathways of neurodegeneration in Parkinson's disease. <i>Science</i> , 2003 , 302, 819-22	33.3	1382
361	PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 378-83	11.5	1199
360	Molecular pathophysiology of Parkinson's disease. <i>Annual Review of Neuroscience</i> , 2005 , 28, 57-87	17	982
359	Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. <i>Science</i> , 2001 , 291, 2423-8	33.3	944
358	Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16842-7	11.5	933
357	Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. <i>Nature Medicine</i> , 1997 , 3, 1089-95	50.5	923
356	Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. <i>Nature Medicine</i> , 1999 , 5, 1403-9	50.5	906
355	Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 13354-9	11.5	835
354	A novel neuronal messenger molecule in brain: the free radical, nitric oxide. <i>Annals of Neurology</i> , 1992 , 32, 297-311	9.4	768
353	PARIS (ZNF746) repression of PGC-1lcontributes to neurodegeneration in Parkinson's disease. <i>Cell</i> , 2011 , 144, 689-702	56.2	667
352	S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. <i>Science</i> , 2004 , 304, 1328-31	33.3	656
351	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. <i>Cell Death and Differentiation</i> , 2015 , 22, 58-73	12.7	643

(2007-2001)

350	Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. <i>Nature Medicine</i> , 2001 , 7, 1144-50	50.5	643
349	Genetic animal models of Parkinson's disease. <i>Neuron</i> , 2010 , 66, 646-61	13.9	602
348	Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18314-9	11.5	571
347	Kinase activity of mutant LRRK2 mediates neuronal toxicity. <i>Nature Neuroscience</i> , 2006 , 9, 1231-3	25.5	540
346	Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. <i>Nature</i> , 1995 , 378, 383-6	50.4	533
345	Nitric oxide synthase in models of focal ischemia. <i>Stroke</i> , 1997 , 28, 1283-8	6.7	515
344	Poly(ADP-ribose) (PAR) polymer is a death signal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 18308-13	11.5	494
343	Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. <i>Human Molecular Genetics</i> , 2007 , 16, 223-32	5.6	466
342	Diagnosis and treatment of Parkinson disease: molecules to medicine. <i>Journal of Clinical Investigation</i> , 2006 , 116, 1744-54	15.9	461
341	Transneuronal Propagation of Pathologic Esynuclein from the Gut to the Brain Models Parkinson's Disease. <i>Neuron</i> , 2019 , 103, 627-641.e7	13.9	453
340	Role of AIF in caspase-dependent and caspase-independent cell death. <i>Oncogene</i> , 2004 , 23, 2785-96	9.2	441
339	Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. <i>Nature Genetics</i> , 1999 , 22, 110-4	36.3	440
338	Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. <i>Journal of Neuroscience</i> , 2005 , 25, 2002-9	6.6	431
337	Localization of LRRK2 to membranous and vesicular structures in mammalian brain. <i>Annals of Neurology</i> , 2006 , 60, 557-69	9.4	429
336	Nitric oxide neurotoxicity. <i>Journal of Chemical Neuroanatomy</i> , 1996 , 10, 179-90	3.2	422
335	Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. <i>Nature Medicine</i> , 2018 , 24, 931-938	50.5	413
334	Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. <i>Journal of Cell Biology</i> , 2002 , 158, 507-17	7.3	405
333	DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14807-12	11.5	387

332	Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. <i>Human Molecular Genetics</i> , 2001 , 10, 919-26	5.6	387
331	Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. <i>Trends in Pharmacological Sciences</i> , 2004 , 25, 259-64	13.2	386
330	Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. <i>Science Translational Medicine</i> , 2012 , 4, 141ra90	17.5	381
329	T cells from patients with Parkinson's disease recognize Esynuclein peptides. <i>Nature</i> , 2017 , 546, 656-661	50.4	379
328	Oxidative stress and genetics in the pathogenesis of Parkinson's disease. <i>Neurobiology of Disease</i> , 2000 , 7, 240-50	7.5	371
327	Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. <i>Science</i> , 1996 , 274, 1917-21	33.3	369
326	Pathological Bynuclein transmission initiated by binding lymphocyte-activation gene 3. <i>Science</i> , 2016 , 353,	33.3	364
325	Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 18676-81	11.5	359
324	Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. <i>Human Molecular Genetics</i> , 2005 , 14, 2063-73	5.6	348
323	Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 5774-9	11.5	333
322	Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. <i>Human Molecular Genetics</i> , 2008 , 17, 431-9	5.6	330
321	Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. <i>Nature Cell Biology</i> , 2008 , 10, 866-73	23.4	307
320	Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. <i>Nature Medicine</i> , 2010 , 16, 998-1000	50.5	303
319	Recent advances in the genetics of Parkinson's disease. <i>Annual Review of Genomics and Human Genetics</i> , 2011 , 12, 301-25	9.7	301
318	Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. <i>British Journal of Pharmacology</i> , 2014 , 171, 2000-16	8.6	298
317	Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. <i>Nucleic Acids Research</i> , 2008 , 36, 6959-76	20.1	298
316	Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 436-41	11.5	298
315	Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. <i>PLoS ONE</i> , 2011 , 6, e18568	3.7	297

(2008-1998)

314	Nitric oxide in neurodegeneration. <i>Progress in Brain Research</i> , 1998 , 118, 215-29	2.9	296
313	Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. <i>Human Molecular Genetics</i> , 2005 , 14, 3801-11	5.6	288
312	Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). <i>Science Signaling</i> , 2011 , 4, ra20	8.8	286
311	Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. <i>EMBO Journal</i> , 2014 , 33, 2798-813	13	284
310	Loss of locus coeruleus neurons and reduced startle in parkin null mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10744-9	11.5	275
309	Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. <i>Human Molecular Genetics</i> , 1998 , 7, 783-90	5.6	269
308	Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. <i>Experimental Neurology</i> , 2009 , 218, 193-202	5.7	264
307	Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 17699-704	11.5	260
306	Parthanatos, a messenger of death. Frontiers in Bioscience - Landmark, 2009, 14, 1116-28	2.8	259
305	Parkin and PINK1: much more than mitophagy. <i>Trends in Neurosciences</i> , 2014 , 37, 315-24	13.3	258
305 304	Parkin and PINK1: much more than mitophagy. <i>Trends in Neurosciences</i> , 2014 , 37, 315-24 The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9	13.3 7	258 253
	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl		
304	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9 Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic	7	253
304	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9 Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. <i>Journal of Neuroscience</i> , 2004 , 24, 10963-73 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated	7	² 53
304 303 302	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9 Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. <i>Journal of Neuroscience</i> , 2004 , 24, 10963-73 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. <i>Journal of Neuroscience</i> , 1998 , 18, 2040-55 PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. <i>Journal of</i>	7 6.6 6.6	253 240 239
304 303 302 301	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9 Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. <i>Journal of Neuroscience</i> , 2004 , 24, 10963-73 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. <i>Journal of Neuroscience</i> , 1998 , 18, 2040-55 PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. <i>Journal of Neurochemistry</i> , 2004 , 90, 1068-75 Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed	7 6.6 6.6	253 240 239 233
304 303 302 301 300	The role of parkin in familial and sporadic Parkinson's disease. <i>Movement Disorders</i> , 2010 , 25 Suppl 1, S32-9 Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. <i>Journal of Neuroscience</i> , 2004 , 24, 10963-73 Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. <i>Journal of Neuroscience</i> , 1998 , 18, 2040-55 PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. <i>Journal of Neurochemistry</i> , 2004 , 90, 1068-75 Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. <i>Neuropharmacology</i> , 1994 , 33, 1425-30	7 6.6 6.6	253 240 239 233 232

296	Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. <i>Human Molecular Genetics</i> , 2005 , 14, 71-84	5.6	218
295	In vitro and in vivo effects of genistein on murine alveolar macrophage TNF alpha production. <i>Cellular and Molecular Neurobiology</i> , 1999 , 23, 231-9	4.6	205
294	Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. <i>Journal of Neuroscience</i> , 2005 , 25, 7968-78	6.6	204
293	Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10209-14	11.5	203
292	Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. <i>Journal of Biological Chemistry</i> , 2007 , 282, 16441-53	5.4	202
291	Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. <i>Journal of Neuroscience</i> , 2005 , 25, 5544-52	6.6	202
29 0	Sulfhydration mediates neuroprotective actions of parkin. <i>Nature Communications</i> , 2013 , 4, 1626	17.4	201
289	Neuroprotection by pharmacologic blockade of the GAPDH death cascade. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3887-9	11.5	200
288	Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16	i691 : &	199
287	Mediation of cell death by poly(ADP-ribose) polymerase-1. <i>Pharmacological Research</i> , 2005 , 52, 5-14	10.2	199
286	Poly(ADP-ribose) drives pathologic Esynuclein neurodegeneration in Parkinson's disease. <i>Science</i> , 2018 , 362,	33.3	196
285	NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase. <i>Journal of Neuroscience</i> , 2000 , 20, 8005-11	6.6	194
284	MicroRNA-223 is neuroprotective by targeting glutamate receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18962-7	11.5	190
283	Free radicals as mediators of neuronal injury. <i>Cellular and Molecular Neurobiology</i> , 1998 , 18, 667-82	4.6	187
282	Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. <i>Human Molecular Genetics</i> , 2005 , 14, 2571-86	5.6	183
281	Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5773-8	11.5	183
280	Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. <i>Cell</i> , 2014 , 157, 472-485	56.2	182
279	Neuronal (type I) nitric oxide synthase regulates nuclear factor kappaB activity and immunologic (type II) nitric oxide synthase expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 2676-80	11.5	177

(2000-2005)

278	Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. <i>Human Molecular Genetics</i> , 2005 , 14, 3885-97	5.6	176	
277	A missense mutation (L166P) in DJ-1, linked to familial Parkinson's disease, confers reduced protein stability and impairs homo-oligomerization. <i>Journal of Neurochemistry</i> , 2003 , 87, 1558-67	6	173	
276	Nuclear targeting of mutant Huntingtin increases toxicity. <i>Molecular and Cellular Neurosciences</i> , 1999 , 14, 121-8	4.8	166	
275	Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor. <i>Neuron</i> , 1990 , 5, 199-208	13.9	166	
274	Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. <i>Journal of Neuroscience</i> , 2009 , 29, 11257-62	6.6	165	
273	Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. <i>Neurobiology of Disease</i> , 2003 , 14, 303-17	7.5	165	
272	A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. <i>Science</i> , 2016 , 354,	33.3	165	
271	GTPase activity plays a key role in the pathobiology of LRRK2. <i>PLoS Genetics</i> , 2010 , 6, e1000902	6	163	
270	Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 14103-8	11.5	162	
269	CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2897-902	11.5	160	
268	The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. <i>Journal of Neuroscience</i> , 2008 , 28, 3384-91	6.6	158	
267	The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. <i>Trends in Neurosciences</i> , 2001 , 24, S7-14	13.3	158	
266	Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. <i>Nature Medicine</i> , 2011 , 17, 692-9	50.5	157	
265	Nitric oxide actions in neurochemistry. <i>Neurochemistry International</i> , 1996 , 29, 97-110	4.4	157	
264	Rare genetic mutations shed light on the pathogenesis of Parkinson disease. <i>Journal of Clinical Investigation</i> , 2003 , 111, 145-151	15.9	152	
263	The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. <i>Trends in Neurosciences</i> , 2001 , 24, 7-14	13.3	151	
262	Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11696-701	11.5	149	
261	Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 8617-22	11.5	149	

260	Deadly conversations: nuclear-mitochondrial cross-talk. <i>Journal of Bioenergetics and Biomembranes</i> , 2004 , 36, 287-94	3.7	146
259	The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. <i>Scientific Reports</i> , 2014 , 4, 4874	4.9	145
258	Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. <i>Nature Neuroscience</i> , 2013 , 16, 1392-400	25.5	142
257	Neuroprotective and neurorestorative strategies for Parkinson's disease. <i>Nature Neuroscience</i> , 2002 , 5 Suppl, 1058-61	25.5	139
256	Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. <i>Annual Review of Medicine</i> , 1996 , 47, 219-27	17.4	133
255	Autophagy-mediated clearance of aggresomes is not a universal phenomenon. <i>Human Molecular Genetics</i> , 2008 , 17, 2570-82	5.6	130
254	Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 5037-42	11.5	129
253	Role of nitric oxide in Parkinson's disease 2006 , 109, 33-41		127
252	Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. <i>Neuropharmacology</i> , 1994 , 33, 1245-51	5.5	126
251	Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. <i>Brain Research</i> , 2007 , 1155, 208-19	3.7	125
250	Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. <i>Hepatology</i> , 2004 , 39, 403-11	11.2	124
249	S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4900-5	11.5	123
248	Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. <i>Journal of Biological Chemistry</i> , 2003 , 278, 48120-8	5.4	123
247	Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. <i>Nature Medicine</i> , 1997 , 3, 571-4	50.5	121
246	Dynamic and redundant regulation of LRRK2 and LRRK1 expression. <i>BMC Neuroscience</i> , 2007 , 8, 102	3.2	121
245	Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. <i>British Journal of Pharmacology</i> , 2018 , 175, 192-222	8.6	120
244	Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. <i>Stroke</i> , 2002 , 33, 1101-6	6.7	117
243	Parkin-associated Parkinson's disease. <i>Cell and Tissue Research</i> , 2004 , 318, 175-84	4.2	116

(2003-2013)

242	Reprogramming cellular events by poly(ADP-ribose)-binding proteins. <i>Molecular Aspects of Medicine</i> , 2013 , 34, 1066-87	16.7	115
241	Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases?. <i>Neurobiology of Aging</i> , 2006 , 27, 524-9	5.6	114
240	Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. <i>EMBO Journal</i> , 2014 , 33, 1548-64	13	113
239	LRRK2 pathobiology in Parkinson's disease. <i>Journal of Neurochemistry</i> , 2014 , 131, 554-65	6	113
238	Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 1999 , 1455, 23-34	1 ^{6.9}	113
237	Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson's disease-related toxicity in human neurons. <i>ACS Chemical Biology</i> , 2011 , 6, 1021-8	4.9	112
236	PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. <i>Molecular Neurodegeneration</i> , 2020 , 15, 20	19	111
235	FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 2425-30	11.5	110
234	Development and characterization of a new Parkinson's disease model resulting from impaired autophagy. <i>Journal of Neuroscience</i> , 2012 , 32, 16503-9	6.6	109
233	Nitric oxide: role in neurotoxicity. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 305-	83	109
232	Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson's disease models. <i>Human Molecular Genetics</i> , 2011 , 20, 3933-42	5.6	107
231	Nitric oxide in neuronal degeneration. Experimental Biology and Medicine, 1996, 211, 33-40	3.7	107
230	GBA1 deficiency negatively affects physiological Esynuclein tetramers and related multimers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 798-803	11.5	106
229	Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). <i>Journal of Neuroscience</i> , 2009 , 29, 15846-50	6.6	103
228	Bcl-x is required for proper development of the mouse substantia nigra. <i>Journal of Neuroscience</i> , 2005 , 25, 6721-8	6.6	103
227	(Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. <i>EMBO Reports</i> , 2015 , 16, 1114-30	6.5	102
226	PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. <i>Cell Reports</i> , 2017 , 18, 918-932	10.6	101
225	Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. <i>Annals of the New York Academy of Sciences</i> , 2003 , 991, 132-9	6.5	101

224	37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. <i>Journal of Biological Chemistry</i> , 2003 , 278, 16857-62	5.4	96
223	Toward the human cellular microRNAome. <i>Genome Research</i> , 2017 , 27, 1769-1781	9.7	95
222	MicroRNAs in Parkinson's disease. <i>Journal of Chemical Neuroanatomy</i> , 2011 , 42, 127-30	3.2	95
221	Differential susceptibility to neurotoxicity mediated by neurotrophins and neuronal nitric oxide synthase. <i>Journal of Neuroscience</i> , 1997 , 17, 4633-41	6.6	95
220	mdx muscle pathology is independent of nNOS perturbation. <i>Human Molecular Genetics</i> , 1998 , 7, 823-9	5.6	94
219	REVIEW ?: Nitric Oxide: Actions and Pathological Roles. <i>Neuroscientist</i> , 1995 , 1, 7-18	7.6	94
218	Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. <i>Human Molecular Genetics</i> , 2014 , 23, 2055-77	5.6	93
217	Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 127	7 ¹ 87 ⁵	92
216	To die or grow: Parkinson's disease and cancer. <i>Trends in Neurosciences</i> , 2005 , 28, 348-52	13.3	91
215	Molecular mechanisms of nitric oxide actions in the brain. <i>Annals of the New York Academy of Sciences</i> , 1994 , 738, 76-85	6.5	91
214	Effects of nitric oxide on neuroendocrine function and behavior. <i>Frontiers in Neuroendocrinology</i> , 1997 , 18, 463-91	8.9	90
213	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2017 , 57, 437-454	17.9	88
212	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. <i>Brain</i> , 2017 , 140, 98-117	11.2	88
211	Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. <i>Journal of Neurochemistry</i> , 2007 , 100, 368-81	6	88
210	Activation of tyrosine kinase c-Abl contributes to Esynuclein-induced neurodegeneration. <i>Journal of Clinical Investigation</i> , 2016 , 126, 2970-88	15.9	88
209	Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. <i>Nature Communications</i> , 2014 , 5, 4930	17.4	87
208	Animal models of Parkinson's disease: vertebrate genetics. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2012 , 2,	5.4	86
207	Fyn kinase regulates misfolded Bynuclein uptake and NLRP3 inflammasome activation in microglia. <i>Journal of Experimental Medicine</i> , 2019 , 216, 1411-1430	16.6	85

(2011-1997)

206	Inhibition of Neuronal Nitric Oxide Synthase Increases Aggressive Behavior in Mice. <i>Molecular Medicine</i> , 1997 , 3, 610-616	6.2	84
205	Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. <i>Journal of Biological Chemistry</i> , 2006 , 281, 16193-6	5.4	84
204	ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. Journal of Neuroscience, 2012 , 32, 3877-86	6.6	81
203	Parkin mediates the degradation-independent ubiquitination of Hsp70. <i>Journal of Neurochemistry</i> , 2008 , 105, 1806-19	6	81
202	Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. <i>Neuroscience</i> , 1999 , 90, 1483-92	3.9	79
201	MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. <i>Neuroscience</i> , 2014 , 268, 128-38	3.9	77
200	Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). <i>Journal of Neurochemistry</i> , 2009 , 110, 687-96	6	77
199	Neuroprotective effect of sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is linked to reduced neuronal nitric oxide production. <i>Stroke</i> , 2001 , 32, 1613-20	6.7	77
198	Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. <i>Annals of Neurology</i> , 2001 , 50, 6-16	9.4	75
197	Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. <i>Journal of Neuroscience</i> , 2006 , 26, 3685-96	6.6	72
196	Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen. <i>Life Sciences</i> , 1988 , 42, 1933-9	6.8	72
195	What causes cell death in Parkinson's disease?. <i>Annals of Neurology</i> , 2008 , 64 Suppl 2, S3-15	9.4	71
194	Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. <i>Journal of Biological Chemistry</i> , 2007 , 282, 12310-8	5.4	71
193	TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF. <i>Brain</i> , 2015 , 138, 3610-22	11.2	69
192	Neurodegenerative phenotypes in an A53T Esynuclein transgenic mouse model are independent of LRRK2. <i>Human Molecular Genetics</i> , 2012 , 21, 2420-31	5.6	69
191	Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. <i>European Journal of Neuroscience</i> , 2001 , 13, 1683-93	3.5	69
190	Cell Death Mechanisms of Neurodegeneration. <i>Advances in Neurobiology</i> , 2017 , 15, 403-425	2.1	68
189	Enhanced autophagy from chronic toxicity of iron and mutant A53T Bynuclein: implications for neuronal cell death in Parkinson disease. <i>Journal of Biological Chemistry</i> , 2011 , 286, 33380-9	5.4	68

188	Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. <i>Journal of Biological Chemistry</i> , 2003 , 278, 13047-55	5.4	68
187	Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. <i>Cell Reports</i> , 2020 , 32, 107908	10.6	68
186	The AAA+ ATPase Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. <i>Cell</i> , 2011 , 145, 284-99	56.2	67
185	A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. Journal of Neurochemistry, 2002 , 83, 186-92	6	67
184	EndoG is dispensable in embryogenesis and apoptosis. Cell Death and Differentiation, 2006, 13, 1147-55	12.7	66
183	Conditional transgenic mice expressing C-terminally truncated human alpha-synuclein (alphaSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. <i>Molecular Neurodegeneration</i> , 2009 , 4, 34	19	65
182	Abnormal localization of leucine-rich repeat kinase 2 to the endosomal-lysosomal compartment in lewy body disease. <i>Journal of Neuropathology and Experimental Neurology</i> , 2009 , 68, 994-1005	3.1	65
181	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. <i>Cell Death and Differentiation</i> , 2018 , 25, 542-572	12.7	64
180	Esynuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. <i>Molecular Neurodegeneration</i> , 2018 , 13, 1	19	63
179	Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. <i>Annals of Neurology</i> , 1995 , 37, 115-8	9.4	63
178	Parkin plays a role in sporadic Parkinson's disease. <i>Neurodegenerative Diseases</i> , 2014 , 13, 69-71	2.3	62
177	Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson's disease. <i>Trends in Pharmacological Sciences</i> , 2012 , 33, 365-73	13.2	62
176	Normalization of subtype-specific muscarinic receptor binding in the denervated hippocampus by septodiagonal band grafts. <i>Experimental Neurology</i> , 1989 , 106, 115-24	5.7	61
175	Rare genetic mutations shed light on the pathogenesis of Parkinson disease. <i>Journal of Clinical Investigation</i> , 2003 , 111, 145-51	15.9	61
174	Adult Conditional Knockout of PGC-1 Leads to Loss of Dopamine Neurons. <i>ENeuro</i> , 2016 , 3,	3.9	61
173	Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. <i>ASN Neuro</i> , 2009 , 1,	5.3	59
172	Microglia and astrocyte dysfunction in parkinson's disease. <i>Neurobiology of Disease</i> , 2020 , 144, 105028	7.5	59
171	Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. <i>Molecular Neurodegeneration</i> , 2018 , 13, 8	19	58

(2003-1997)

170	Aggressive behavior in male mice lacking the gene for neuronal nitric oxide synthase requires testosterone. <i>Brain Research</i> , 1997 , 769, 66-70	3.7	58
169	MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity. <i>Neurobiology of Disease</i> , 2007 , 26, 312-22	7.5	58
168	Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease. <i>Molecular Brain Research</i> , 2005 , 134, 103-8		55
167	Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2006 , 26, 135-41	7-3	54
166	Identification and analysis of plasticity-induced late-response genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 2145-50	11.5	54
165	Neuroprotective FK506 does not alter in vivo nitric oxide production during ischemia and early reperfusion in rats. <i>Stroke</i> , 1999 , 30, 1279-85	6.7	54
164	Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra. <i>Experimental Neurology</i> , 1991 , 111, 282-92	5.7	54
163	Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. <i>Science Translational Medicine</i> , 2016 , 8, 333ra48	17.5	52
162	Physiological and toxicological actions of nitric oxide in the central nervous system. <i>Advances in Pharmacology</i> , 1995 , 34, 323-42	5.7	52
161	LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization. <i>PLoS ONE</i> , 2013 , 8, e77198	3.7	51
160	Neuronal ischaemic preconditioning. <i>Trends in Pharmacological Sciences</i> , 2000 , 21, 423-4	13.2	51
159	Resistance to MPTP-neurotoxicity in Bynuclein knockout mice is complemented by human Bynuclein and associated with increased Bynuclein and Akt activation. <i>PLoS ONE</i> , 2011 , 6, e16706	3.7	50
158	Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration. <i>Neurobiology of Disease</i> , 2014 , 71, 345-58	7.5	49
157	Protein microarray characterization of the S-nitrosoproteome. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 63-72	7.6	49
156	Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. <i>Free Radical Biology and Medicine</i> , 2009 , 47, 1049-56	7.8	49
155	Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. <i>Autophagy</i> , 2008 , 4, 251-253	10.2	48
154	Parkinson's disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2- and Sin-1-induced cell death. <i>Neurobiology of Aging</i> , 2007 , 28, 1709-17	5.6	47
153	Role for the ubiquitin-proteasome system in Parkinson's disease and other neurodegenerative brain amyloidoses. <i>NeuroMolecular Medicine</i> , 2003 , 4, 95-108	4.6	47

152	Trumping neurodegeneration: Targeting common pathways regulated by autosomal recessive Parkinson's disease genes. <i>Experimental Neurology</i> , 2017 , 298, 191-201	5.7	45
151	Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1635-1640	11.5	45
150	Neuronal activity regulates hippocampal miRNA expression. <i>PLoS ONE</i> , 2011 , 6, e25068	3.7	45
149	The interplay of microRNA and neuronal activity in health and disease. <i>Frontiers in Cellular Neuroscience</i> , 2013 , 7, 136	6.1	44
148	Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. <i>Journal of Neurochemistry</i> , 2010 , 113, 1012-22	6	44
147	Reevaluation of phosphorylation sites in the Parkinson disease-associated leucine-rich repeat kinase 2. <i>Journal of Biological Chemistry</i> , 2010 , 285, 29569-76	5.4	42
146	Stroke outcome in double-mutant antioxidant transgenic mice. <i>Stroke</i> , 2000 , 31, 2685-91	6.7	42
145	Nitric Oxide Signaling in Neurodegeneration and Cell Death. <i>Advances in Pharmacology</i> , 2018 , 82, 57-83	5.7	41
144	c-Abl and Parkinson's Disease: Mechanisms and Therapeutic Potential. <i>Journal of Parkinsong Disease</i> , 2017 , 7, 589-601	5.3	41
143	Pathological Endogenous Esynuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy. <i>Stem Cell Reports</i> , 2018 , 10, 356-365	8	40
142	NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice. <i>Journal of Clinical Investigation</i> , 2010 , 120, 2446-56	15.9	39
141	BAD is a pro-survival factor prior to activation of its pro-apoptotic function. <i>Journal of Biological Chemistry</i> , 2004 , 279, 42240-9	5.4	39
140	The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. <i>Molecular Neurodegeneration</i> , 2017 , 12, 32	19	37
139	The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration. <i>Movement Disorders</i> , 2019 , 34, 959-969	7	37
138	Botch promotes neurogenesis by antagonizing Notch. <i>Developmental Cell</i> , 2012 , 22, 707-20	10.2	37
137	Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. <i>Neuroscience</i> , 2007 , 144, 56-65	3.9	37
136	Models of LRRK2-Associated Parkinson's Disease. <i>Advances in Neurobiology</i> , 2017 , 14, 163-191	2.1	36
135	Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxicity. <i>European Journal of Neuroscience</i> , 2003 , 18, 1402-9	3.5	34

(2005-1990)

134	Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons. <i>Brain Research Bulletin</i> , 1990 , 25, 903-12	3.9	34
133	S-nitrosylation in Parkinson's disease and related neurodegenerative disorders. <i>Methods in Enzymology</i> , 2005 , 396, 139-50	1.7	33
132	Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain. <i>Neuroscience</i> , 2007 , 148, 198-211	3.9	32
131	The cast of molecular characters in Parkinson's disease: felons, conspirators, and suspects. <i>Annals of the New York Academy of Sciences</i> , 2003 , 991, 80-92	6.5	32
130	New insights into Parkinson's disease. <i>Journal of Neurology</i> , 2003 , 250 Suppl 3, III15-24	5.5	32
129	Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning. <i>Neuron</i> , 2017 , 93, 425-440	13.9	31
128	PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency. <i>Molecular Neurodegeneration</i> , 2020 , 15, 17	19	31
127	Identification through high-throughput screening of 4'-methoxyflavone and 3',4'-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos. <i>British Journal of Pharmacology</i> , 2013 , 169, 1263-78	8.6	31
126	Glutamate-stimulated calcium activation of Ras/Erk pathway mediated by nitric oxide. <i>Diabetes Research and Clinical Practice</i> , 1999 , 45, 113-5	7.4	31
125	Nanozyme scavenging ROS for prevention of pathologic Bynuclein transmission in Parkinson disease. <i>Nano Today</i> , 2021 , 36, 101027	17.9	31
124	Activation mechanisms of the E3 ubiquitin ligase parkin. <i>Biochemical Journal</i> , 2017 , 474, 3075-3086	3.8	30
123	Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. <i>Stem Cells Translational Medicine</i> , 2014 , 3, 888-98	6.9	30
122	New synaptic and molecular targets for neuroprotection in Parkinson's disease. <i>Movement Disorders</i> , 2013 , 28, 51-60	7	30
121	Identification of calcium- and nitric oxide-regulated genes by differential analysis of library expression (DAzLE). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 647-52	11.5	30
120	ADP-ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2021,	5.7	30
119	Ganglioside regulation of AMPA receptor trafficking. <i>Journal of Neuroscience</i> , 2014 , 34, 13246-58	6.6	29
118	LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. <i>Journal of Chemical Neuroanatomy</i> , 2016 , 76, 90-97	3.2	29
117	The involvement of nitric oxide in the enhanced expression of mu-opioid receptors during intestinal inflammation in mice. <i>British Journal of Pharmacology</i> , 2005 , 145, 758-66	8.6	28

116	Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. <i>Stem Cells Translational Medicine</i> , 2019 , 8, 112-123	6.9	28
115	Precision therapy for a new disorder of AMPA receptor recycling due to mutations in. <i>Neurology: Genetics</i> , 2017 , 3, e130	3.8	27
114	The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-46	6.6	27
113	Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. <i>International Review of Cell and Molecular Biology</i> , 2020 , 353, 1-29	6	26
112	DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. <i>Translational Psychiatry</i> , 2018 , 8, 76	8.6	26
111	A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy. <i>Brain</i> , 2018 , 141, 651-661	11.2	26
110	The impact of genetic research on our understanding of Parkinson's disease. <i>Progress in Brain Research</i> , 2010 , 183, 21-41	2.9	26
109	Transcriptional responses to loss or gain of function of the leucine-rich repeat kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity. <i>Human Molecular Genetics</i> , 2012 , 21, 163-74	5.6	26
108	Lessons from Drosophila models of DJ-1 deficiency. <i>Science of Aging Knowledge Environment: SAGE KE</i> , 2006 , 2006, pe2		26
107	Functional identification of neuroprotective molecules. <i>PLoS ONE</i> , 2010 , 5, e15008	3.7	26
106	Early-onset Parkinson's disease due to PINK1 p.Q456X mutationclinical and functional study. <i>Parkinsonism and Related Disorders</i> , 2014 , 20, 1274-8	3.6	25
105	Advances in neuronal cell death 2007. Stroke, 2008, 39, 286-8	6.7	25
104	Determinants of seeding and spreading of Esynuclein pathology in the brain. <i>Science Advances</i> , 2020 , 6,	14.3	25
103	Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis. <i>Acta Neuropathologica Communications</i> , 2019 , 7, 125	7.3	24
102	The orphan nuclear receptor, steroidogenic factor 1, regulates neuronal nitric oxide synthase gene expression in pituitary gonadotropes. <i>Molecular Endocrinology</i> , 2002 , 16, 2828-39		24
101	Botch is a Eglutamyl cyclotransferase that deglycinates and antagonizes Notch. <i>Cell Reports</i> , 2014 , 7, 681-8	10.6	23
100	Promising disease-modifying therapies for Parkinson's disease. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	22
99	Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson's	11.2	

98	MiR-223 regulates the differentiation of immature neurons. <i>Molecular and Cellular Therapies</i> , 2014 , 2,		21
97	LRRK2 GTPase dysfunction in the pathogenesis of Parkinson's disease. <i>Biochemical Society Transactions</i> , 2012 , 40, 1074-9	5.1	21
96	gp120 neurotoxicity in primary cortical cultures. Advances in Neuroimmunology, 1994 , 4, 167-73		21
95	Alterations in cortical muscarinic receptors following cholinotoxin (AF64A) lesion of the rat nucleus basalis magnocellularis. <i>Neurobiology of Aging</i> , 1992 , 13, 25-32	5.6	21
94	Downregulation of muscarinic receptors in the rat caudate-putamen after lesioning of the ipsilateral nigrostriatal dopamine pathway with 6-hydroxydopamine (6-OHDA): normalization by fetal mesencephalic transplants. <i>Brain Research</i> , 1991 , 540, 145-52	3.7	21
93	Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons. <i>Stem Cell Reports</i> , 2020 , 15, 629-645	8	21
92	Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. <i>Stroke</i> , 2010 , 41, S64-71	6.7	20
91	Comment on "S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function". <i>Science</i> , 2005 , 308, 1870; author reply 1870	33.3	20
90	Impaired Ovulation in Mice with Targeted Deletion of the Neuronal Isoform of Nitric Oxide Synthase. <i>Molecular Medicine</i> , 1998 , 4, 658-664	6.2	20
89	Motor neuron death in ALS: programmed by astrocytes?. <i>Neuron</i> , 2014 , 81, 961-963	13.9	19
88	Nitric Oxide: Diverse Actions in the Central and Peripheral Nervous Systems. <i>Neuroscientist</i> , 1998 , 4, 96-	-1/1@	19
87	Overexpression of Parkinson's Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and Esynuclein Pathology. <i>ENeuro</i> , 2017 , 4,	3.9	19
86	Two approaches reveal a new paradigm of 'switchable or genetics-influenced allele-specific DNA methylation' with potential in human disease. <i>Cell Discovery</i> , 2017 , 3, 17038	22.3	18
85	Augmentation of poly(ADP-ribose) polymerase-dependent neuronal cell death by acidosis. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2017 , 37, 1982-1993	7-3	17
84	The road to survival goes through PARG. <i>Cell Cycle</i> , 2005 , 4, 397-9	4.7	17
83	Hippocampal muscarinic supersensitivity after AF64A medial septal lesion excludes M1 receptors. Brain Research Bulletin, 1990 , 25, 311-7	3.9	16
8 ₃		3.9	16 15

80	Abberant protein synthesis in G2019S LRRK2 Drosophila Parkinson disease-related phenotypes. <i>Fly</i> , 2014 , 8, 165-9	1.3	14
79	What have genetically engineered mice taught us about ischemic injury?. <i>Current Molecular Medicine</i> , 2004 , 4, 207-25	2.5	14
78	Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. <i>Acta Neuropathologica Communications</i> , 2021 , 9, 78	7.3	14
77	Parkin: clinical aspects and neurobiology. <i>Clinical Neuroscience Research</i> , 2001 , 1, 467-482		13
76	Receptor alterations in subcortical structures after bilateral middle cerebral artery infarction of the cerebral cortex. <i>Experimental Neurology</i> , 1994 , 128, 88-96	5.7	13
75	Defects in mRNA Translation in LRRK2-Mutant hiPSC-Derived Dopaminergic Neurons Lead to Dysregulated Calcium Homeostasis. <i>Cell Stem Cell</i> , 2020 , 27, 633-645.e7	18	13
74	Mechanistic basis for receptor-mediated pathological Bynuclein fibril cell-to-cell transmission in Parkinson's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	13
73	Thorase variants are associated with defects in glutamatergic neurotransmission that can be rescued by Perampanel. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	12
72	SnapShot: pathogenesis of Parkinson's disease. <i>Cell</i> , 2009 , 139, 440.e1-2	56.2	12
71	Recent advances in our understanding of Parkinson's disease. <i>Drug Discovery Today Disease Mechanisms</i> , 2005 , 2, 427-433		12
70	High-Content Genome-Wide RNAi Screen Reveals as a Key Mediator of Neuronal Cell Death. <i>ENeuro</i> , 2016 , 3,	3.9	10
69	Lysosomal Enzyme Glucocerebrosidase Protects against All-42 Oligomer-Induced Neurotoxicity. <i>PLoS ONE</i> , 2015 , 10, e0143854	3.7	9
68	A lysosomal lair for a pathogenic protein pair. Science Translational Medicine, 2011, 3, 91ps28	17.5	9
67	Neurons Derived from Human Induced Pluripotent Stem Cells Integrate into Rat Brain Circuits and Maintain Both Excitatory and Inhibitory Synaptic Activities. <i>ENeuro</i> , 2019 , 6,	3.9	9
66	Lymphocyte Activation Gene 3 (Lag3) Contributes to Esynucleinopathy in Esynuclein Transgenic Mice. <i>Frontiers in Cellular Neuroscience</i> , 2021 , 15, 656426	6.1	8
65	Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA. <i>Journal of Neurochemistry</i> , 2001 , 76, 1386-94	6	7
64	Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. <i>ELife</i> , 2021 , 10,	8.9	6
63	PARIS farnesylation prevents neurodegeneration in models of Parkinson's disease. <i>Science Translational Medicine</i> , 2021 , 13,	17.5	6

62	Usp16: key controller of stem cells in Down syndrome. <i>EMBO Journal</i> , 2013 , 32, 2788-9	13	5
61	Histochemical analysis of nitric oxide synthase by NADPH diaphorase staining. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2001 , Chapter 10, Unit 10.6	1	5
60	Nitric Oxide Synthase Inhibitors. CNS Drugs, 1996, 6, 351-357	6.7	5
59	The AAA + ATPase Thorase is neuroprotective against ischemic injury. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 1836-1848	7.3	5
58	STING mediates neurodegeneration and neuroinflammation in nigrostriatal Esynucleinopathy <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e211881911	9 ^{11.5}	5
57	AMPA Receptor Surface Expression Is Regulated by S-Nitrosylation of Thorase and Transnitrosylation of NSF. <i>Cell Reports</i> , 2020 , 33, 108329	10.6	4
56	Mining for survival genes. <i>Biochemical Society Transactions</i> , 2006 , 34, 1307-9	5.1	4
55	Neurotoxic Actions and Mechanisms of Nitric Oxide 2000 , 695-710		4
54	Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in Esynuclein-Based Mouse Models of Parkinson's Disease. <i>Journal of Proteome Research</i> , 2021 , 20, 3428-3443	5.6	4
53	Quantitative mass spectrometric analysis of the mouse cerebral cortex after ischemic stroke. <i>PLoS ONE</i> , 2020 , 15, e0231978	3.7	4
52	Influence of Nitric Oxide on Neuroendocrine Function and Behavior 2000 , 429-438		3
51	Aplp1 and the Aplp1-Lag3 Complex facilitates transmission of pathologic Esynuclein		3
50	Targeting Parthanatos in Ischemic Stroke. Frontiers in Neurology, 2021, 12, 662034	4.1	3
49	LRRK2 pathobiology in Parkinson's disease - virtual inclusion. <i>Journal of Neurochemistry</i> , 2016 , 139 Suppl 1, 75-76	6	3
48	PARP and the Release of Apoptosis-Inducing Factor from Mitochondria 2006 , 103-117		3
47	Reply: Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. <i>Brain</i> , 2017 , 140, e33	11.2	2
46	Development of a novel method for the quantification of tyrosine 39 phosphorylated Eland Elynuclein in human cerebrospinal fluid. <i>Clinical Proteomics</i> , 2020 , 17, 13	5	2
45	Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms 2018, 3-17		2

44	NADPH Diaphorase Staining. <i>Methods in Neurosciences</i> , 1996 , 31, 62-67		2
43	Nitric Oxide Toxicity in Central Nervous System Cultures. <i>Methods in Neurosciences</i> , 1996 , 30, 26-43		2
42	Generation of isoform-specific antibodies to nitric oxide synthases. <i>Methods in Enzymology</i> , 1996 , 268, 349-58	1.7	2
41	Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. <i>Pharmacological Reviews</i> , 2021 , 73, 33-97	22.5	2
40	Measuring the activity of leucine-rich repeat kinase 2: a kinase involved in Parkinson's disease. <i>Methods in Molecular Biology</i> , 2012 , 795, 45-54	1.4	2
39	Complement and coagulation cascades are potentially involved in dopaminergic neurodegeneration in Esynuclein-based mouse models of Parkinson disease		2
38	Genomics-Proteomics and Stroke: Introduction. <i>Stroke</i> , 2004 , 35, 2731-2734	6.7	1
37	Identification and evaluation of NO-regulated genes by differential analysis of primary cDNA library expression (DAzLE). <i>Methods in Enzymology</i> , 2005 , 396, 359-68	1.7	1
36	Function of Nitric Oxide in Neuronal Cell Death. <i>Methods in Neurosciences</i> , 1996 , 228-240		1
35	Waiting for PARIS-A Biological Target in Search of a Drug. Journal of Parkinson Disease, 2021,	5.3	1
34	Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-lassociated gene regulation. <i>Scientific Reports</i> , 2021 , 11, 21500	4.9	1
33	TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson's disease. <i>Neuron</i> , 2021 , 109, 3758-3774.e11	13.9	1
32	Experience-dependent translational state defined by cell type-specific ribosome profiling		1
31	Molecular Mediation of Prion-like Esynuclein Fibrillation from Toxic PFFs to Nontoxic Species <i>ACS Applied Bio Materials</i> , 2020 , 3, 6096-6102	4.1	1
30	Host regulator PARP1 contributes to sex differences and immune responses in a mouse model of tube	rculosi	S 1
29	Protocol for measurement of calcium dysregulation in human induced pluripotent stem cell-derived dopaminergic neurons. <i>STAR Protocols</i> , 2021 , 2, 100405	1.4	1
28	Reply: ATAD1 encephalopathy and stiff baby syndrome: a recognizable clinical presentation. <i>Brain</i> , 2018 , 141, e50	11.2	1
27	USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Research, 2021 , 49, 11083-11102	20.1	1

26	Recent advances in preventing neurodegenerative diseases Faculty Reviews, 2021, 10, 81	1.2	1
25	Parthanatos 2008 , 143-156		Ο
24	Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms 2010 , 79-88		О
23	AIF3 splicing switch triggers neurodegeneration. <i>Molecular Neurodegeneration</i> , 2021 , 16, 25	19	О
22	Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological Esynuclein <i>Cell Reports</i> , 2022 , 38, 110358	10.6	0
21	Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease <i>Science Advances</i> , 2022 , 8, eabh1824	14.3	O
20	A high-affinity cocaine binding site associated with the brain acid soluble protein 1 <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2200545119	11.5	0
19	Intracellular Signaling: Mediators and Protective Responses 2016 , 80-89		
18	Parkinson Disease: Molecular Insights 2007 , 221-239		
17	Poly (ADP-ribose) polymerase and brain ischemia. <i>International Congress Series</i> , 2003 , 1252, 21-29		
16	The role of nitric oxide and PARP in neuronal cell death 2005 , 146-156		
15	Mechanisms of ischemic tolerance 2002 , 58-71		
14	Overview of the pathway and functions of nitric oxide. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2001 , Chapter 10, Unit 10.1	1	
13	Ubiquitination by Parkin Implications in Parkinson Disease 2006 , 213-224		
12	Intracellular Signaling: Mediators and Protective Responses 2004 , 895-902		
11	Genetics Of Parkinson Disease. Neurological Disease and Therapy, 2005, 611-631		
10			
	Parkin and Neurodegeneration211-236		

8	Integration of Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons into Rat Brain Circuits. <i>Bio-protocol</i> , 2020 , 10, e3746	0.9
7	Reversal of nigrostriatal-lesion-induced receptor alterations by grafting of fetal mesencephalic dopaminergic neurons. <i>Advances in Experimental Medicine and Biology</i> , 1991 , 287, 221-35	3.6
6	Nitric Oxide Neurotoxicity in Primary Neuronal Cultures 1995 , 3-15	
5	Nitric Oxide Actions in the Nervous System 1996 , 247-262	
4	Intracellular Signaling: Mediators and Protective Responses 2011 , 154-161	
3	The PINK1 p.1368N Mutation Affects Protein Stability and Kinase Activity with Its Structural Change. <i>Juntendo Medical Journal</i> , 2018 , 64, 17-30	0.1
2	Intracellular Signaling: Mediators and Protective Responses 2022 , 74-81.e5	
1	Parkin and Neurodegeneration211-236	