Yan-Cheng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791230/publications.pdf

Version: 2024-02-01

63	1,404	22	34
papers	citations	h-index	g-index
63	63	63	958
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-performance carbon-coated ZnMn2O4 nanocrystallite supercapacitors with tailored microstructures enabled by a novel solution combustion method. Journal of Power Sources, 2018, 378, 90-97.	7.8	87
2	Highâ€Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod–Coil Materials as a Floating Gate. Advanced Materials, 2020, 32, e2002638.	21.0	80
3	A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. Journal of Power Sources, 2019, 426, 205-215.	7.8	77
4	Correlating the Molecular Structure of Polyimides with the Dielectric Constant and Dissipation Factor at a High Frequency of 10 GHz. ACS Applied Polymer Materials, 2021, 3, 362-371.	4.4	60
5	High Mobility Preservation of Near Amorphous Conjugated Polymers in the Stretched States Enabled by Biaxially-Extended Conjugated Side-Chain Design. Chemistry of Materials, 2020, 32, 7370-7382.	6.7	57
6	Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34158-34170.	8.0	50
7	Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42429-42437.	8.0	50
8	Recent Advances in Organic Phototransistors: Nonvolatile Memory, Artificial Synapses, and Photodetectors. Small Science, 2022, 2, .	9.9	48
9	Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. Journal of Materials Chemistry C, 2020, 8, 6013-6024.	5.5	44
10	Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility–Stretchability Property. ACS Applied Materials & Interfaces, 2020, 12, 50648-50659.	8.0	43
11	Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS Applied Materials & Diterfaces, 2021, 13, 2932-2943.	8.0	42
12	Selfâ€Assembled Nanostructures of Quantum Dot/Conjugated Polymer Hybrids for Photonic Synaptic Transistors with Ultralow Energy Consumption and Zeroâ€Gate Bias. Advanced Functional Materials, 2022, 32, 2107925.	14.9	42
13	Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 33014-33027.	8.0	41
14	Lowâ€Energyâ€Consumption and Electretâ€Free Photosynaptic Transistor Utilizing Poly(3â€hexylthiophene)â€Based Conjugated Block Copolymers. Advanced Science, 2022, 9, e2105190.	11.2	38
15	High Performance Biomass-Based Polyimides for Flexible Electronic Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 3278-3288.	6.7	34
16	Intrinsically stretchable isoindigo–bithiophene conjugated copolymers using poly(acrylate amide) side chains for organic field-effect transistors. Polymer Chemistry, 2019, 10, 5172-5183.	3.9	33
17	Thermally and Mechanically Stable Polyimides as Flexible Substrates for Organic Field-Effect Transistors. ACS Applied Polymer Materials, 2020, 2, 3422-3432.	4.4	32
18	Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules, 2021, 54, 7388-7399.	4.8	31

#	Article	IF	CITATIONS
19	Modulation of the Hydrophilicity on Asymmetric Side Chains of Isoindigo-Based Polymers for Improving Carrier Mobility–Stretchability Properties. Macromolecules, 2021, 54, 1665-1676.	4.8	30
20	Improving the performance of photonic transistor memory devices using conjugated block copolymers as a floating gate. Journal of Materials Chemistry C, 2021, 9, 1259-1268.	5.5	28
21	Conception of a Smart Artificial Retina Based on a Dualâ€Mode Organic Sensing Inverter. Advanced Science, 2021, 8, e2100742.	11.2	27
22	Enhancing Longâ€Term Thermal Stability of Nonâ€Fullerene Organic Solar Cells Using Selfâ€Assembly Amphiphilic Dendritic Block Copolymer Interlayers. Advanced Functional Materials, 2021, 31, 2005753.	14.9	25
23	Comprehensive Non-volatile Photo-programming Transistor Memory via a Dual-Functional Perovskite-Based Floating Gate. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20417-20426.	8.0	25
24	Multilevel Photonic Transistor Memory Devices Based on 1D Electrospun Semiconducting Polymer /Perovskite Composite Nanofibers. Advanced Materials Technologies, 2021, 6, 2100080.	5.8	23
25	Investigation of the Mobility–Stretchability Relationship of Ester-Substituted Polythiophene Derivatives. Macromolecules, 2020, 53, 4968-4981.	4.8	22
26	Highly Efficient Photoâ€Induced Recovery Conferred Using Chargeâ€Transfer Supramolecular Electrets in Bistable Photonic Transistor Memory. Advanced Functional Materials, 2021, 31, 2102174.	14.9	22
27	Development of Block Copolymers with Poly(3-hexylthiophene) Segments as Compatibilizers in Non-Fullerene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12083-12092.	8.0	19
28	Thermally Stable Colorless Copolyimides with a Low Dielectric Constant and Dissipation Factor and Their Organic Field-Effect Transistor Applications. ACS Applied Polymer Materials, 2021, 3, 3153-3163.	4.4	19
29	Organic–Inorganic Nanocomposite Film for Highâ€Performance Stretchable Resistive Memory Device. Macromolecular Rapid Communications, 2020, 41, 1900542.	3.9	18
30	Fast Photoresponsive Phototransistor Memory Using Star-Shaped Conjugated Rod–Coil Molecules as a Floating Gate. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15468-15477.	8.0	16
31	Realizing fast photoinduced recovery with polyfluoreneâ€ <scp><i>block</i>â€poly</scp> (vinylphenyl) Tj ETQq1 1 Science, 2022, 60, 525-537.	0.784314 3.8	4 rgBT /Ove 15
32	Structure–Mobility Relationship of Benzodithiophene-Based Conjugated Polymers with Varied Biaxially Extended Conjugated Side Chains. Industrial & Engineering Chemistry Research, 2020, 59, 9105-9115.	3.7	14
33	Improving Mobility–Stretchability Properties of Polythiophene Derivatives through Ester-Substituted, Biaxially Extended Conjugated Side Chains. ACS Applied Polymer Materials, 2021, 3, 1628-1637.	4.4	14
34	Liquid Crystalline Rylenediimides with Highly Order Smectic Layer Structure as a Floating Gate for Multiband Photoresponding Photonic Transistor Memory. Advanced Electronic Materials, 2022, 8, 2100798.	5.1	13
35	Organic liquid crystals in optoelectronic device applications: <scp>Fieldâ€effect</scp> transistors, nonvolatile memory, and photovoltaics. Journal of the Chinese Chemical Society, 2022, 69, 1289-1304.	1.4	12
36	Intermetallic Reactions during the Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectric Material with Cu Electrodes Using a Sn Interlayer. Metals, 2016, 6, 92.	2.3	11

#	Article	IF	CITATIONS
37	A compatible and crosslinked poly(2â€allylâ€6â€methylphenol―co â€2,6â€dimethylphenol)/polystyrene blend fo insulating adhesive film at high frequency. Journal of Applied Polymer Science, 2019, 136, 47828.	or 2.6	11
38	Alkalineâ€developable and negativeâ€type photosensitive polyimide with high sensitivity and excellent mechanical properties using photoâ€base generator. Journal of Polymer Science, 2020, 58, 2366-2375.	3.8	11
39	An ultra heat-resistant polyimide formulated with photo-base generator for alkaline-developable, negative-type photoresist. Reactive and Functional Polymers, 2020, 157, 104760.	4.1	10
40	Biomass-Derived Degradable Poly(azomethine)s for Flexible Bistable Photonic Transistor Memories. ACS Sustainable Chemistry and Engineering, 2022, 10, 5268-5277.	6.7	10
41	Investigating the backbone conformation and configuration effects for donor–acceptor conjugated polymers with ladder-type structures synthesized through Aldol polycondensation. Journal of Materials Chemistry C, 2021, 9, 9473-9483.	5.5	9
42	Naphthalene-diimide-based all-conjugated block copolymer as an effective compatibilizer to improve the performance and thermal stability of all-polymer solar cells. Materials Chemistry Frontiers, 2021, 5, 7216-7227.	5.9	9
43	Intrinsically stretchable naphthalenediimide–bithiophene conjugated statistical terpolymers using branched conjugation break spacers for field–effect transistors. Polymer Chemistry, 2021, 12, 6167-6178.	3.9	8
44	Multiband Photoresponding Fieldâ€Effect Transistor Memory Using Conjugated Block Copolymers with Pendent Isoindigo Coils as a Polymer Electret. Advanced Electronic Materials, 2021, 7, 2100655.	5.1	8
45	Hydrogel-based sustainable and stretchable field-effect transistors. Organic Electronics, 2022, 100, 106358.	2.6	8
46	Volatility Transition from Shortâ€Term to Longâ€Term Photonic Transistor Memory by Using Smectic Liquid Crystalline Molecules as a Floating Gate. Advanced Electronic Materials, 2022, 8, 2101123.	5.1	8
47	Strain-insensitive naphthalene-diimide-based conjugated polymers through sequential regularity control. Materials Chemistry Frontiers, 2022, 6, 891-900.	5.9	7
48	Unraveling the Singlet Fission Effects on Charge Modulations of Organic Phototransistor Memory Devices. ACS Applied Electronic Materials, 2022, 4, 1266-1276.	4.3	7
49	Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4767-4776.	2.2	5
50	Electrolytic Migration of Ag-Pd Alloy Wires with Various Pd Contents. Journal of Electronic Materials, 2018, 47, 3634-3638.	2.2	5
51	Pyrene-Incorporated Side Chain in π-Conjugated Polymers for Non-Volatile Transistor-Type Memory Devices with Improved Stretchability. ACS Applied Polymer Materials, 2021, 3, 2109-2119.	4.4	5
52	Highly Thermal Stable Polyimides Applied in Flexible Resistive Memory. Macromolecular Materials and Engineering, 2021, 306, 2100512.	3.6	5
53	Harnessing of Spatially Confined Perovskite Nanocrystals Using Polysaccharide-based Block Copolymer Systems. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30279-30289.	8.0	5
54	Effects of Current Stressing on the Grain Structure and Mechanical Properties of Ag-Alloy Bonding Wires with Various Pd and Au Contents. Metals, 2016, 6, 182.	2.3	4

YAN-CHENG LIN

#	Article	IF	CITATIONS
55	Functionalized Poly(phenylene ether) with high thermal stability as flexible dielectrics and substrates for organic field-effect transistors. Organic Electronics, 2021, 96, 106225.	2.6	4
56	Enhancing the Memory-Stretchability Property of π-Conjugated Polymers Using Pendant Arene Side Chains in Nonvolatile Transistor Memory. ACS Applied Polymer Materials, 0, , .	4.4	4
57	Improving the performance of all-inorganic perovskite light-emitting diodes through using polymeric interlayers with a pendant design. Materials Chemistry Frontiers, 2021, 5, 7199-7207.	5.9	3
58	Stretchable Multicolor Emission of Polymer/Dye Blends Induced by Intermolecular Interaction and Solidâ€5tate Aggregation. Macromolecular Chemistry and Physics, 2021, 222, 2000428.	2.2	3
59	Highly Efficient Photoâ€Induced Recovery Conferred Using Chargeâ€Transfer Supramolecular Electrets in Bistable Photonic Transistor Memory (Adv. Funct. Mater. 40/2021). Advanced Functional Materials, 2021, 31, 2170299.	14.9	3
60	Selfâ€Assembled Nanostructures of Quantum Dot/Conjugated Polymer Hybrids for Photonic Synaptic Transistors with Ultralow Energy Consumption and Zeroâ€Gate Bias (Adv. Funct. Mater. 6/2022). Advanced Functional Materials, 2022, 32, .	14.9	3
61	Mechanically Tough and Durable Poly(siloxane imide) Network Elastomer for Stretchable Electronic Applications. ACS Applied Polymer Materials, 2022, 4, 3498-3510.	4.4	3
62	Exploring the effect of the spacer structure in the heterocyclic ring-fused isoindigo-based conjugated polymer on the charge-transporting property. Journal of Polymer Research, 2021, 28, 1.	2.4	2
63	Synthesis of a novel A-b-(B-co-C)-type terpolymer with a regioregular poly(3-hexylthiophene) segment and its application to intrinsically stretchable transistor memory. Materials Chemistry and Physics, 2022, 281, 125911.	4.0	2