Anton Iliuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790984/publications.pdf

Version: 2024-02-01

361045 329751 40 2,236 20 37 h-index citations g-index papers 47 47 47 3481 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aptamer in Bioanalytical Applications. Analytical Chemistry, 2011, 83, 4440-4452.	3.2	693
2	Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3175-3180.	3.3	328
3	Regulation of Hemolysin Expression and Virulence of Staphylococcus aureus by a Serine/Threonine Kinase and Phosphatase. PLoS ONE, 2010, 5, e11071.	1.1	151
4	In-depth Analyses of Kinase-dependent Tyrosine Phosphoproteomes Based on Metal Ion-functionalized Soluble Nanopolymers. Molecular and Cellular Proteomics, 2010, 9, 2162-2172.	2.5	143
5	The Tig1 Histone Deacetylase Complex Regulates Infectious Growth in the Rice Blast Fungus <i>Magnaporthe oryzae</i> Â Â Â. Plant Cell, 2010, 22, 2495-2508.	3.1	138
6	Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5615-5620.	3.3	115
7	Regulation of parkin and PINK1 by neddylation. Human Molecular Genetics, 2012, 21, 2514-2523.	1.4	60
8	Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. Journal of Proteome Research, 2018, 17, 3308-3316.	1.8	59
9	Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification. Journal of Proteome Research, 2020, 19, 2563-2574.	1.8	51
10	Playing tag with quantitative proteomics. Analytical and Bioanalytical Chemistry, 2009, 393, 503-513.	1.9	46
11	Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers. Analytical Chemistry, 2018, 90, 6307-6313.	3.2	46
12	Cdc28 and Cdc14 Control Stability of the Anaphase-promoting Complex Inhibitor Acm1. Journal of Biological Chemistry, 2008, 283, 10396-10407.	1.6	35
13	Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation. Journal of the American Chemical Society, 2016, 138, 15311-15314.	6.6	34
14	Analytical challenges translating mass spectrometryâ€based phosphoproteomics from discovery to clinical applications. Electrophoresis, 2014, 35, 3430-3440.	1.3	31
15	Phosphorylation Assay Based on Multifunctionalized Soluble Nanopolymer. Analytical Chemistry, 2011, 83, 2767-2774.	3.2	30
16	Phosphatase of Regenerating Liver 3 (PRL3) Provokes a Tyrosine Phosphoproteome to Drive Prometastatic Signal Transduction. Molecular and Cellular Proteomics, 2013, 12, 3759-3777.	2.5	28
17	Chemical Visualization of Phosphoproteomes on Membrane. Molecular and Cellular Proteomics, 2012, 11, 629-639.	2.5	26
18	ArhGAP15, a Rac-specific GTPase-activating Protein, Plays a Dual Role in Inhibiting Small GTPase Signaling. Journal of Biological Chemistry, 2013, 288, 21117-21125.	1.6	23

#	Article	IF	CITATIONS
19	Identification of Drug Targets In Vitro and in Living Cells by Solubleâ€Nanopolymerâ€Based Proteomics. Angewandte Chemie - International Edition, 2011, 50, 4133-4136.	7.2	21
20	Multiplexed Quantitation of Protein Expression and Phosphorylation Based on Functionalized Soluble Nanopolymers. Journal of the American Chemical Society, 2012, 134, 18201-18204.	6.6	21
21	Is phosphoproteomics ready for clinical research?. Clinica Chimica Acta, 2013, 420, 23-27.	0.5	18
22	In-depth analyses of B cell signaling through tandem mass spectrometry of phosphopeptides enriched by PolyMAC. International Journal of Mass Spectrometry, 2015, 377, 744-753.	0.7	18
23	Global Phosphoproteomics of Activated B Cells Using Complementary Metal Ion Functionalized Soluble Nanopolymers. Analytical Chemistry, 2014, 86, 6363-6371.	3.2	17
24	Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. International Journal of Molecular Sciences, 2022, 23, 5779.	1.8	16
25	Syk Inhibits the Activity of Protein Kinase A by Phosphorylating Tyrosine 330 of the Catalytic Subunit. Journal of Biological Chemistry, 2013, 288, 10870-10881.	1.6	14
26	Tissue phosphoproteomics with PolyMAC identifies potential therapeutic targets in a transgenic mouse model of HER2 positive breast cancer. Electrophoresis, 2014, 35, 3463-3469.	1.3	12
27	Functionalized Soluble Nanopolymers for Phosphoproteome Analysis. Methods in Molecular Biology, 2011, 790, 277-285.	0.4	12
28	Glass Fiber-Supported Hybrid Monolithic Spin Tip for Enrichment of Phosphopeptides from Urinary Extracellular Vesicles. Analytical Chemistry, 2020, 92, 14790-14797.	3.2	8
29	Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation. Cells, 2022, 11, 2070.	1.8	8
30	Identifying Protein Complexes by Affinity Purification and Mass Spectrometry Analysis in the Rice Blast Fungus. Methods in Molecular Biology, 2011, 722, 157-166.	0.4	7
31	Quantitative Phospho-proteomics Based on Soluble Nanopolymers. Methods in Molecular Biology, 2009, 527, 117-129.	0.4	6
32	Sensitive measurement of total protein phosphorylation level in complex protein samples. Analyst, The, 2015, 140, 3390-3396.	1.7	5
33	Multiplexed Imaging of Protein Phosphorylation on Membranes Based on Ti ^{IV} Functionalized Nanopolymers. ChemBioChem, 2016, 17, 900-903.	1.3	3
34	Identification of Phosphorylated Proteins on a Global Scale. Current Protocols in Chemical Biology, 2018, 10, e48.	1.7	3
35	High-Throughput Phosphorylation Screening and Validation through Ti(IV)-Nanopolymer Functionalized Reverse Phase Phosphoprotein Array. Analytical Chemistry, 2018, 90, 10263-10270.	3.2	3
36	Universal Nonâ€Antibody Detection of Protein Phosphorylation Using plMAGO. Current Protocols in Chemical Biology, 2015, 7, 17-25.	1.7	1

3

ANTON ILIUK

#	Article	IF	CITATIONS
37	Abstract 3202: Universal detection of protein phosphorylation based on multi-functionalized soluble nanopolymers. , 2012, , .		0
38	Abstract 542: Syk inhibits the activity of protein kinase A by phosphorylating tyrosine 330 of the catalytic subunit in breast cancer cells , 2013 , , .		0
39	Abstract 5307: Development of pIMAGO for universal detection of protein phosphorylation., 2014,,.		O
40	Profiling Glycoproteins on Functionalized Reverse Phase Protein Array. Methods in Molecular Biology, 2021, 2237, 207-215.	0.4	0