
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pdâ^'Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts. Journal of the American Chemical Society, 2010, 132, 14745-14747.	13.7	430
2	Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10, 1008-1015.	13.6	368
3	Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nature Materials, 2012, 11, 690-693.	27.5	344
4	Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylenePart II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258, 219-227.	6.2	297
5	Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylenePart I: Preparation and structural investigation under reaction conditions. Journal of Catalysis, 2008, 258, 210-218.	6.2	269
6	Electrochemical Energy Conversion on Intermetallic Compounds: A Review. ACS Catalysis, 2019, 9, 2018-2062.	11.2	253
7	How to Control the Selectivity of Palladiumâ€based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem, 2012, 4, 1048-1063.	3.7	223
8	Intermetallic compounds in heterogeneous catalysis—a quickly developing field. Science and Technology of Advanced Materials, 2014, 15, 034803.	6.1	223
9	A new approach to well-defined, stable and site-isolated catalysts. Science and Technology of Advanced Materials, 2007, 8, 420-427.	6.1	181
10	Synthesis and Catalytic Properties of Nanoparticulate Intermetallic Ga–Pd Compounds. Journal of the American Chemical Society, 2011, 133, 9112-9118.	13.7	165
11	In situ surface characterization of the intermetallic compound PdGa – A highly selective hydrogenation catalyst. Surface Science, 2009, 603, 1784-1792.	1.9	144
12	Nanosizing Intermetallic Compounds Onto Carbon Nanotubes: Active and Selective Hydrogenation Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10231-10235.	13.8	128
13	Raman effect in icosahedral boron-rich solids. Science and Technology of Advanced Materials, 2010, 11, 023001.	6.1	116
14	Intermetallic Compound Pd2Ga as a Selective Catalyst for the Semi-Hydrogenation of Acetylene: From Model to High Performance Systems. Journal of Physical Chemistry C, 2011, 115, 1368-1374.	3.1	109
15	Formation of Intermetallic Compounds by Reactive Metal–Support Interaction: A Frequently Encountered Phenomenon in Catalysis. ChemCatChem, 2015, 7, 374-392.	3.7	109
16	High CO ₂ Selectivity in Methanol Steam Reforming through ZnPd/ZnO Teamwork. Angewandte Chemie - International Edition, 2013, 52, 4389-4392.	13.8	108
17	CuAl2 revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy. Journal of Solid State Chemistry, 2006, 179, 1707-1719.	2.9	103
18	The Intermetallic Compound ZnPd and Its Role in Methanol Steam Reforming. Catalysis Reviews - Science and Engineering, 2013, 55, 289-367.	12.9	102

#	Article	IF	CITATIONS
19	Influence of bulk composition of the intermetallic compound ZnPd on surface composition and methanol steam reforming properties. Journal of Catalysis, 2012, 285, 41-47.	6.2	99
20	Adsorption of Small Hydrocarbons on the Three-Fold PdGa Surfaces: The Road to Selective Hydrogenation. Journal of the American Chemical Society, 2014, 136, 11792-11798.	13.7	90
21	Etching of the intermetallic compounds PdGa and Pd3Ga7: An effective way to increase catalytic activity?. Journal of Catalysis, 2009, 264, 93-103.	6.2	76
22	Controlled synthesis and catalytic properties of supported In–Pd intermetallic compounds. Journal of Catalysis, 2016, 340, 49-59.	6.2	76
23	Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga–Pd compounds. Journal of Catalysis, 2016, 338, 265-272.	6.2	67
24	Intermetallic compounds in catalysis – a versatile class of materials meets interesting challenges. Science and Technology of Advanced Materials, 2020, 21, 303-322.	6.1	65
25	Surface dynamics of the intermetallic catalyst Pd2Ga, Part II – Reactivity and stability in liquid-phase hydrogenation of phenylacetylene. Journal of Catalysis, 2014, 309, 221-230.	6.2	62
26	Gaâ€₽d/Ga ₂ O ₃ Catalysts: The Role of Gallia Polymorphs, Intermetallic Compounds, and Pretreatment Conditions on Selectivity and Stability in Different Reactions. ChemCatChem, 2012, 4, 1764-1775.	3.7	61
27	ZnO is a CO 2 -selective steam reforming catalyst. Journal of Catalysis, 2013, 297, 151-154.	6.2	59
28	Cu,Zn,Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming – pH-controlled synthesis by microemulsion technique. Journal of Materials Chemistry, 2012, 22, 9632.	6.7	49
29	Order-Induced Selectivity Increase of Cu60Pd40 in the Semi-Hydrogenation of Acetylene. Materials, 2013, 6, 2958-2977.	2.9	49
30	Surface Investigation of Intermetallic PdGa(1Ì 1Ì 1Ì). Langmuir, 2012, 28, 6848-6856.	3.5	48
31	Reassessing the compound CeCd6: the structure of Ce6Cd37. Journal of Alloys and Compounds, 2000, 307, 141-148.	5.5	47
32	Raman scattering and isotopic phonon effects in dodecaborides. Journal of Physics Condensed Matter, 2011, 23, 065403.	1.8	47
33	Isolated Pd Sites on the Intermetallic PdGa(111) and PdGa(\$ar 1\$\$ar 1\$\$ar 1\$) Model Catalyst Surfaces. Angewandte Chemie - International Edition, 2012, 51, 9339-9343.	13.8	47
34	Synthesis of BiRh Nanoplates with Superior Catalytic Performance in the Semihydrogenation of Acetylene. Chemistry of Materials, 2012, 24, 1639-1644.	6.7	46
35	Bromine-promoted PtZn is very effective for the chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2009, 261, 60-65.	6.2	43
36	The Enhancing Effect of BrÃ,nsted Acidity of Supported MoO _{<i>x</i>} Species on their Activity and Selectivity in Ethylene/ <i>trans</i> â€2â€Butene Metathesis. ChemCatChem, 2014, 6, 1664-1672.	3.7	43

#	Article	IF	CITATIONS
37	The oxidation of copper catalysts during ethylene epoxidation. Physical Chemistry Chemical Physics, 2015, 17, 25073-25089.	2.8	43
38	Mechanistic insights into the catalytic methanol steam reforming performance of Cu/ZrO2 catalysts by in situ and operando studies. Journal of Catalysis, 2020, 391, 497-512.	6.2	41
39	Evidence for heterogeneous Sonogashira coupling of phenylacetylene and iodobenzene catalyzed by well defined rhodium nanoparticles. Dalton Transactions, 2009, , 7602.	3.3	40
40	Dynamic Surface Processes of Nanostructured Pd2Ga Catalysts Derived from Hydrotalcite-Like Precursors. ACS Catalysis, 2014, 4, 2048-2059.	11.2	40
41	PdZn or ZnPd: Charge Transfer and Pd–Pd Bonding as the Driving Force for the Tetragonal Distortion of the Cubic Crystal StructureÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1735-1739.	1.2	39
42	Surface dynamics of the intermetallic catalyst Pd2Ga, Part I – Structural stability in UHV and different gas atmospheres. Journal of Catalysis, 2014, 309, 209-220.	6.2	39
43	Surface and Subsurface Dynamics of the Intermetallic Compound ZnNi in Methanol Steam Reforming. Journal of Physical Chemistry C, 2012, 116, 14930-14935.	3.1	38
44	Quantitative High-Angle Annular Dark-Field Scanning Transmission Electron Microscope (HAADF-STEM) Tomography and High-Resolution Electron Microscopy of Unsupported Intermetallic GaPd ₂ Catalysts. Journal of Physical Chemistry C, 2012, 116, 13343-13352.	3.1	38
45	Growth and Characterization of BPO4 Single Crystals. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 655-662.	1.2	35
46	Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Nanoscale, 2012, 4, 2018.	5.6	34
47	Ensemble Effect Evidenced by CO Adsorption on the 3-Fold PdGa Surfaces. Journal of Physical Chemistry C, 2014, 118, 12260-12265.	3.1	34
48	Growth of large PdGa single crystals from the melt. Intermetallics, 2010, 18, 1663-1668.	3.9	33
49	PdGa and Pd3Ga7: Highly-Selective Catalysts for the Acetylene Partial Hydrogenation. Studies in Surface Science and Catalysis, 2006, , 481-488.	1.5	32
50	Crystallite Size Controls the Crystal Structure of Cu ₆₀ Pd ₄₀ Nanoparticles. Chemistry of Materials, 2009, 21, 5886-5891.	6.7	32
51	Peculiarities in the Raman spectra of ZrB12 and LuB12 single crystals. Journal of Solid State Chemistry, 2006, 179, 2761-2767.	2.9	31
52	Chemical Bonding in Compounds of the CuAl ₂ Family: MnSn ₂ , FeSn ₂ and CoSn ₂ . Chemistry - A European Journal, 2010, 16, 10357-10365.	3.3	31
53	Physical properties of the InPd intermetallic catalyst. Intermetallics, 2014, 55, 56-65.	3.9	31
54	Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo _{1â^'xâ^'y} Pd _x Zn _y O _{3±δ} . Catalysis Science and Technology, 2016, 6, 1455-1468.	4.1	31

#	Article	IF	CITATIONS
55	Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science and Technology, 2018, 8, 5848-5857.	4.1	31
56	Sulfur Spillover on Carbon Materials and Possible Impacts on Metal–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 13666-13670.	13.8	30
57	Local Ordering in the Intermetallic Compound Cu1-xAl2Studied by NMR Spectroscopy. Chemistry of Materials, 2007, 19, 1147-1153.	6.7	29
58	On surface Raman scattering and luminescence radiation in boron carbide. Journal of Physics Condensed Matter, 2010, 22, 045401.	1.8	29
59	The catalytic properties of thin film Pd-rich GaPd2 in methanol steam reforming. Journal of Catalysis, 2014, 309, 231-240.	6.2	29
60	Revealing Electronic Influences in the Semihydrogenation of Acetylene. Journal of Physical Chemistry C, 2018, 122, 21891-21896.	3.1	29
61	Synthesis of Intermetallic Pt-Based Catalysts by Lithium Naphthalenide-Driven Reduction for Selective Hydrogenation of Cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12, 18551-18561.	8.0	28
62	Refinement of the crystal structure of palladium gallium (1:1), PdGa. Zeitschrift Fur Kristallographie - New Crystal Structures, 2010, 225, 617-618.	0.3	27
63	Challenging the Durability of Intermetallic Mo–Ni Compounds in the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 23616-23626.	8.0	27
64	Reactive metal-support interaction in the Cu-In ₂ O ₃ system: intermetallic compound formation and its consequences for CO ₂ -selective methanol steam reforming. Science and Technology of Advanced Materials, 2019, 20, 356-366.	6.1	26
65	Chemical Bonding in TiSb2and VSb2:Â A Quantum ChemicalandExperimental Study. Inorganic Chemistry, 2007, 46, 6319-6328.	4.0	25
66	Refinement of the crystal structure of dipalladium gallium, Pd2Ga. Zeitschrift Fur Kristallographie - New Crystal Structures, 2008, 223, 7-8.	0.3	24
67	Atomic interactions in the intermetallic catalyst GaPd. Molecular Physics, 2016, 114, 1250-1259.	1.7	24
68	Proving a Paradigm in Methanol Steam Reforming: Catalytically Highly Selective In _{<i>x</i>} Pd _{<i>y</i>} /In ₂ O ₃ Interfaces. ACS Catalysis, 2021, 11, 304-312.	11.2	24
69	Impregnated and Co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of th Microstructure on the CO2 Selectivity in Methanol Steam Reforming. Catalysis Letters, 2018, 148, 3062-3071.	າe 2.6	21
70	PdGa intermetallic hydrogenation catalyst: an NMR and physical property study. Journal of Physics Condensed Matter, 2012, 24, 085703.	1.8	20
71	Methanol Steam Reforming. , 2012, , 175-235.		20
72	ZnPd/ZnO Aerogels as Potential Catalytic Materials. Advanced Functional Materials, 2016, 26, 1014-1020.	14.9	20

#	Article	IF	CITATIONS
73	Revealing the Atomic Structure of Intermetallic GaPd ₂ Nanocatalysts by using Aberrationâ€Corrected Scanning Transmission Electron Microscopy. ChemCatChem, 2013, 5, 2599-2609.	3.7	19
74	Microstructural and Chemical Evolution and Analysis of a Self-Activating CO ₂ -Selective Cu–Zr Bimetallic Methanol Steam Reforming Catalyst. Journal of Physical Chemistry C, 2016, 120, 25395-25404.	3.1	19
75	Pressure-Induced Internal Redox Reaction of Cs2[PdI4]·I2, Cs2[PdBr4]·I2, and Cs2[PdCl4]·I2. Inorganic Chemistry, 2006, 45, 9818-9825.	4.0	18
76	Microstructural Changes of Supported Intermetallic Nanoparticles under Reductive and Oxidative Conditions: An in Situ X-ray Absorption Study of Pd/Ga ₂ O ₃ . Journal of Physical Chemistry C, 2012, 116, 21816-21827.	3.1	18
77	Cobalt Silicides Nanoparticles Embedded in Nâ€Đoped Carbon as Highly Efficient Catalyst in Selective Hydrogenation of Cinnamaldehyde. ChemistrySelect, 2018, 3, 1658-1666.	1.5	17
78	Azidoaurates of the Alkali Metals. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1671-1680.	1.2	16
79	Crystal structures of iron distannide, FeSn2, and cobalt distannide, CoSn2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2007, 222, 83-84.	0.3	16
80	Formation of ZnO Patches on ZnPd/ZnO during Methanol Steam Reforming: A Strong Metal–Support Interaction Effect?. Journal of Physical Chemistry C, 2016, 120, 10460-10465.	3.1	16
81	Boosting Hydrogen Production from Methanol and Water by in situ Activation of Bimetallic Cuâ^'Zr Species. ChemCatChem, 2016, 8, 1778-1781.	3.7	16
82	Systematic Exploration of Synthesis Pathways to NanoparticulateÂZnPd. Chemistry of Materials, 2012, 24, 3094-3100.	6.7	15
83	Raman scattering in rare earths tetraborides. Solid State Sciences, 2014, 31, 24-32.	3.2	15
84	CO Adsorption on GaPd—Unravelling the Chemical Bonding in Real Space. ChemPhysChem, 2017, 18, 334-337.	2.1	15
85	Nanoparticles Supported on Subâ€Nanometer Oxide Films: Scaling Model Systems to Bulk Materials. Angewandte Chemie - International Edition, 2021, 60, 5890-5897.	13.8	14
86	Effect of Activation Method on the HDS Activity of Unsupported CoMoS Catalysts Prepared from a Novel Precursor. Catalysis Letters, 2012, 142, 1312-1320.	2.6	13
87	Steering the methanol steam reforming performance of Cu/ZrO2 catalysts by modification of the Cu-ZrO2 interface dimensions resulting from Cu loading variation. Applied Catalysis A: General, 2021, 623, 118279.	4.3	13
88	The sol–gel autocombustion as a route towards highly CO ₂ -selective, active and long-term stable Cu/ZrO ₂ methanol steam reforming catalysts. Materials Chemistry Frontiers, 2021, 5, 5093-5105.	5.9	12
89	The First Ternary Phase in the Ga-Sn-Pd System: Synthesis, Crystal Structure, and Catalytic Properties of Ga2+x +y Sn4-x Pd9. European Journal of Inorganic Chemistry, 2017, 2017, 3542-3550.	2.0	11
90	Inkjet Printing of GaPd ₂ into Microâ€Channels for the Selective Hydrogenation of Acetylene. ChemCatChem, 2017, 9, 3733-3742.	3.7	10

#	Article	IF	CITATIONS
91	Insights into the Electronic Effects in Methanol Electro-Oxidation by Ternary In _{1–<i>x</i>} Sn _{<i>x</i>} Pd ₂ Intermetallic Compounds. ACS Applied Energy Materials, 2021, 4, 11279-11289.	5.1	10
92	Disentangling Electronic and Geometric Effects in Electrocatalysis through Substitution in Isostructural Intermetallic Compounds. Journal of the American Chemical Society, 2022, 144, 8379-8388.	13.7	10
93	Complex Metallic Phases in Catalysis. , 2010, , 385-399.		9
94	Kinetic Parameters for the Selective Hydrogenation of Acetylene on GaPd ₂ and GaPd. ChemPhysChem, 2017, 18, 2517-2525.	2.1	9
95	Addressing the Stability of Bulk Electrode Materials in the Electrochemical Methanol Oxidation. Journal of the Electrochemical Society, 2019, 166, F1079-F1087.	2.9	9
96	Thin Coatings of α―and βâ€Bi 2 O 3 by Ultrasonic Spray Coating of a Molecular Bismuth Oxido Cluster and their Application for Photocatalytic Water Purification Under Visible Light. ChemistryOpen, 2020, 9, 277-284.	1.9	9
97	Isotopic phonon effects in LaB6—LaB6do not possess cubic symmetry and show a non-random isotope distribution. Journal of Physics Condensed Matter, 2012, 24, 385405.	1.8	8
98	Excitation-dependent Raman spectra in hexaborides – Surface phonons of LaB6. Solid State Sciences, 2012, 14, 1567-1571.	3.2	8
99	Chemical Bonding in Zincâ€based Intermetallic Compounds with the CuTi or the CsCl Type of Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 753-759.	1.2	8
100	Methanol steam reforming on LaCo1â^'â^'Pd Zn O3±. Catalysis Today, 2015, 258, 256-261.	4.4	8
101	CO adsorption on the GaPd(1Ì,,1Ì,,1Ì,,) surface: a comparative DFT study using different functionals. Physical Chemistry Chemical Physics, 2016, 18, 14390-14400.	2.8	8
102	Anisotropic Reactivity of CaAg under Ethylene Epoxidation Conditions. Inorganic Chemistry, 2018, 57, 10821-10831.	4.0	8
103	Ca–Ag compounds in ethylene epoxidation reaction. Science and Technology of Advanced Materials, 2019, 20, 902-916.	6.1	7
104	Unprecedented Catalytic Activity and Selectivity in Methanol Steam Reforming by Reactive Transformation of Intermetallic In–Pt Compounds. Journal of Physical Chemistry C, 2021, 125, 9809-9817.	3.1	7
105	In Operando GIXRD and XRR on Polycrystalline In ₅₂ Pd ₄₈ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 3065-3069.	1.2	6
106	Activation of the Highlyâ€Selective Pd ₁₁ Bi ₂ Se ₂ during the Semiâ€Hydrogenation of Acetylene. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1777-1781.	1.2	6
107	Formic Acid Decomposition over ZnPd—Implications for Methanol Steam Reforming. ChemCatChem, 2018, 10, 2664-2672.	3.7	5
108	Chemical Behaviour of CaAg ₂ under Ethylene Epoxidation Conditions. European Journal of Inorganic Chemistry, 2018, 2018, 3933-3941.	2.0	5

#	Article	IF	CITATIONS
109	Properties of Bulk Inâ€Pt Intermetallic Compounds in Methanol Steam Reforming. ChemPhysChem, 2022, , e202200074.	2.1	5
110	Quantitative HAADF-STEM tomography of unsupported intermetallic Ga-Pd catalysts. Journal of Physics: Conference Series, 2012, 371, 012024.	0.4	4
111	Isotopic phonon effects in β-rhombohedral boron—non-statistical isotope distribution. Journal of Physics Condensed Matter, 2012, 24, 175401.	1.8	4
112	Fest/Gasâ€Reaktion zur Darstellung von getrÄgerten interÂmetallischen Gaâ€Pd Katalysatormaterialien. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1061-1068.	1.2	4
113	The atomic structure of low-index surfaces of the intermetallic compound InPd. Journal of Chemical Physics, 2015, 143, 074705.	3.0	4
114	Simple vapor-solid synthesis of Zn-based intermetallic compounds. Journal of Alloys and Compounds, 2018, 743, 155-162.	5.5	4
115	Intermetallic compounds in heterogeneous catalysis. Science and Technology of Advanced Materials, 2020, 21, 767-767.	6.1	4
116	Intermetallic GaPd 2 Thin Films for Selective Hydrogenation of Acetylene. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1218-1226.	1.2	4
117	Establishing the Isostructural Platform GaPd ₂ â€InPd ₂ â€GnPd ₂ to Address Electronic and/or Structural Effects. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2137-2146.	1.2	4
118	Synthesis of Supported Ga Nanodrops by a Bottomâ€up Route. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1453-1458.	1.2	3
119	Steering the methanol steam reforming reactivity of intermetallic Cu–In compounds by redox activation: stability <i>vs.</i> formation of an intermetallic compound–oxide interface. Catalysis Science and Technology, 2021, 11, 5518-5533.	4.1	3
120	Adsorption of CO ₂ at <i>T</i> = 298 K and Pressures up to 6 MPa on Quasi Nonporous Al ₁₃ Fe ₄ . Journal of Chemical & Engineering Data, 2022, 67, 1663-1673.	1.9	3
121	German Catalysis, Celebrated in Weimar. ChemCatChem, 2013, 5, 1297-1298.	3.7	2
122	Fixed-bed reactor for catalytic studies on low-surface area materials. Review of Scientific Instruments, 2019, 90, 014101.	1.3	2
123	Corrosionâ€Free EMF Measurements of Zincâ€Based Intermetallic Compounds at Ambient Temperature. ChemPhysChem, 2020, 21, 977-986.	2.1	2
124	Thin Coatings of α―and βâ€Bi ₂ O ₃ by Ultrasonic Spray Coating of a Molecular Bismuth Oxido Cluster and their Application for Photocatalytic Water Purification Under Visible Light. ChemistryOpen, 2020, 9, 271-271.	1.9	2
125	Nanopartikel auf subnanometer dÃ1⁄4nnen oxidischen Filmen: Skalierung von Modellsystemen. Angewandte Chemie, 2021, 133, 5954-5961.	2.0	2
126	Bildung von Nano-Zinn-Whiskern durch Korrosion von MnSn2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 1702-1702.	1.2	1

#	Article	IF	CITATIONS
127	Refinement of the crystal structures of titanium diantimonide, TiSb2, and vanadium diantimonide, Vo.%Sb2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2004, 219, 229-230.	0.3	1

128 Inside Cover: Chemical Bonding in Compounds of the CuAl2 Family: MnSn2, FeSn2 and CoSn2 (Chem.) Tj ETQq0 0 0.3 gBT /Overlock 10

129	On the twinning in ZnPd. Physical Chemistry Chemical Physics, 2017, 19, 5778-5785.	2.8	1
130	4.7 Rare earth metals in heterogeneous catalysis. , 2020, , 463-486.		1
131	Corrosionâ€Free EMF Measurements of Zincâ€Based Intermetallic Compounds at Ambient Temperature. ChemPhysChem, 2020, 21, 960-960.	2.1	1
132	ZnPd in Methanol Steam Reforming. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1614-1614.	1.2	0
133	List of Abstracts. IOP Conference Series: Materials Science and Engineering, 2017, 181, 011002.	0.6	0
134	Revealing Intricacies of Nano-Sized Intermetallic GaPd2Catalysts. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C734-C734.	0.1	0