Pengchao Xie

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3790935/pengchao-xie-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 2,651 25 45 g-index

45 g-index

45 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
44	Inactivation of Microcystis Aeruginosa by peracetic acid combined with ultraviolet: Performance and characteristics. <i>Water Research</i> , 2022 , 208, 117847	12.5	1
43	Molybdenum disulfide (MoS2) promoted sulfamethoxazole degradation in the Fe(III)/peracetic acid process. <i>Separation and Purification Technology</i> , 2022 , 281, 119854	8.3	2
42	Sulfite activation using FeO as a source of ferrous ions for fluoxetine degradation: A collaborated experimental and DFT study. <i>Chemical Engineering Journal</i> , 2022 , 441, 135960	14.7	1
41	Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole. <i>Applied Catalysis B: Environmental</i> , 2021 , 280, 119422	21.8	44
40	Application of UV/chlorine pretreatment for controlling ultrafiltration (UF) membrane fouling caused by different natural organic fractions. <i>Chemosphere</i> , 2021 , 263, 127993	8.4	11
39	Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: Performance, mechanism, and disinfection by-product formation. <i>Water Research</i> , 2021 , 189, 116605	12.5	13
38	Magnetic amino-functionalized lanthanum metal-organic framework for selective phosphate removal from water. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 611, 12590)6 ^{5.1}	15
37	Lanthanum molybdate/magnetite for selective phosphate removal from wastewater: characterization, performance, and sorption mechanisms. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 4342-4351	5.1	4
36	Molybdenum disulfide (MoS): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics. <i>Water Research</i> , 2021 , 201, 117291	12.5	17
35	Enhanced degradation of tetrabromobisphenol A by Fe/sulfite process under simulated sunlight irradiation. <i>Chemosphere</i> , 2021 , 285, 131442	8.4	3
34	Fabrication of a Z-scheme nanocomposite photocatalyst for enhanced photocatalytic degradation of ibuprofen under visible light irradiation. <i>Separation and Purification Technology</i> , 2020 , 250, 117241	8.3	13
33	Fabrication of hydrophobic/hydrophilic bifunctional adsorbent for the removal of sulfamethoxazole and bisphenol A in Water. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104161	6.8	10
32	Improved sulfamethoxazole degradation by the addition of MoS2 into the Fe2+/peroxymonosulfate process. <i>Separation and Purification Technology</i> , 2020 , 235, 116170	8.3	52
31	Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products. <i>Journal of Membrane Science</i> , 2020 , 598, 117662	9.6	27
30	Simultaneous Removal of and 2,4,6-Trichlorophenol by UV/Persulfate Process. <i>Frontiers in Chemistry</i> , 2020 , 8, 591641	5	O
29	Thermal Activation of Peracetic Acid in Aquatic Solution: The Mechanism and Application to Degrade Sulfamethoxazole. <i>Environmental Science & Environmental Science & Environm</i>	10.3	52
28	Application of Cobalt/Peracetic Acid to Degrade Sulfamethoxazole at Neutral Condition: Efficiency and Mechanisms. <i>Environmental Science & Environmental Science & Environment</i>	10.3	78

(2016-2020)

27	Transformation of tetrabromobisphenol a in the iron ions-catalyzed auto-oxidation of HSO32[ISO32[iprocess. <i>Separation and Purification Technology</i> , 2020 , 235, 116197	8.3	7
26	UV-assisted chlorination of algae-laden water: Cell lysis and disinfection byproducts formation. <i>Chemical Engineering Journal</i> , 2020 , 383, 123165	14.7	16
25	Application of vacuum-ultraviolet (VUV) to degrade Eblocker propranolol in aquatic environment: Efficiency, kinetics, pathways and acute toxicity. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 103, 75-84	5.3	4
24	A Novel Model of Pressure Decay in Pressure-Driven Membrane Integrity Tests Based on the Bubble Dynamic Process. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 273	2.6	
23	Degradation of imipramine by vacuum ultraviolet (VUV) system: Influencing parameters, mechanisms, and variation of acute toxicity. <i>Chemosphere</i> , 2019 , 233, 282-291	8.4	16
22	Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/HO: Variation of characteristics and alleviation of ultrafiltration membrane fouling. <i>Water Research</i> , 2019 , 158, 213-226	12.5	57
21	Comparative adsorption of emerging contaminants in water by functional designed magnetic poly(N-isopropylacrylamide)/chitosan hydrogels. <i>Science of the Total Environment</i> , 2019 , 671, 377-387	10.2	29
20	Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation. <i>Water Research</i> , 2019 , 149, 169-178	12.5	72
19	Ultraviolet/persulfate (UV/PS) pretreatment of typical natural organic matter (NOM): Variation of characteristics and control of membrane fouling. <i>Chemosphere</i> , 2019 , 214, 136-147	8.4	34
18	Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation		
10	pathways. Chemical Engineering Journal, 2019 , 358, 1091-1100	14.7	110
17		14.7	61
	pathways. Chemical Engineering Journal, 2019 , 358, 1091-1100 Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency.		61
17	pathways. Chemical Engineering Journal, 2019, 358, 1091-1100 Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. Water Research, 2018, 133, 69-78 Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process.	12.5	61
17 16	pathways. Chemical Engineering Journal, 2019, 358, 1091-1100 Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. Water Research, 2018, 133, 69-78 Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. Journal of Hazardous Materials, 2018, 353, 18-25 Formation of halogenated by-products during chemical cleaning of humic acid-fouled UF	12.5	61
17 16 15	Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. Water Research, 2018, 133, 69-78 Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. Journal of Hazardous Materials, 2018, 353, 18-25 Formation of halogenated by-products during chemical cleaning of humic acid-fouled UF membrane by sodium hypochlorite solution. Chemical Engineering Journal, 2018, 332, 76-84 Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly (vinyl alcohol)/sodium alginate hydrogel beads. Colloids and Surfaces A: Physicochemical and	12.5 12.8 14.7	61 42 22
17 16 15	Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. Water Research, 2018, 133, 69-78 Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. Journal of Hazardous Materials, 2018, 353, 18-25 Formation of halogenated by-products during chemical cleaning of humic acid-fouled UF membrane by sodium hypochlorite solution. Chemical Engineering Journal, 2018, 332, 76-84 Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly (vinyl alcohol)/sodium alginate hydrogel beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 237-244 Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of	12.5 12.8 14.7 5.1	61 42 22 32
17 16 15 14	Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. Water Research, 2018, 133, 69-78 Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. Journal of Hazardous Materials, 2018, 353, 18-25 Formation of halogenated by-products during chemical cleaning of humic acid-fouled UF membrane by sodium hypochlorite solution. Chemical Engineering Journal, 2018, 332, 76-84 Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly (vinyl alcohol)/sodium alginate hydrogel beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 237-244 Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants. Chemical Engineering Journal, 2017, 314, 240-248 Heat-activated persulfate oxidation of methyl- and ethyl-parabens: Effect, kinetics, and mechanism.	12.5 12.8 14.7 5.1	61 42 22 32 86

9	Removal of Microcystis aeruginosa by UV-activated persulfate: Performance and characteristics. <i>Chemical Engineering Journal</i> , 2016 , 300, 245-253	14.7	83	
8	A mini review of preoxidation to improve coagulation. <i>Chemosphere</i> , 2016 , 155, 550-563	8.4	73	
7	Chlorination of polyvinyl pyrrolidonepolysulfone membranes: Organic compound release, byproduct formation, and changes in membrane properties. <i>Journal of Membrane Science</i> , 2015 , 489, 28-35	9.6	15	
6	Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. <i>Water Research</i> , 2015 , 69, 223-233	12.5	350	
5	Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter. <i>Chemical Engineering Journal</i> , 2015 , 269, 203-211	14.7	72	
4	Rapid spectrophotometric determination of peroxymonosulfate in water with cobalt-mediated oxidation decolorization of methyl orange. <i>Chemical Engineering Journal</i> , 2014 , 253, 34-39	14.7	30	
3	Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	465	
2	Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation. <i>Environmental Science & Environmental Science</i>	10.3	170	
1	Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. <i>Environmental Science & Environmental Science & Environ</i>	10.3	295	