Carola Cavallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micro-fragmentation is a valid alternative to cell expansion and enzymatic digestion of adipose tissue for the treatment of knee osteoarthritis: a comparative preclinical study. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 773-781.	2.3	20
2	Effective Label-Free Sorting of Multipotent Mesenchymal Stem Cells from Clinical Bone Marrow Samples. Bioengineering, 2022, 9, 49.	1.6	8
3	Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. International Orthopaedics, 2021, 45, 525-538.	0.9	36
4	Small Extracellular Vesicles from adipose derived stromal cells significantly attenuate in vitro the NF-lºB dependent inflammatory/catabolic environment of osteoarthritis. Scientific Reports, 2021, 11, 1053.	1.6	26
5	TP53 drives abscopal effect by secretion of senescence-associated molecular signals in non-small cell lung cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 89.	3.5	18
6	Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses. Biology, 2021, 10, 398.	1.3	30
7	A new method for the study of biophysical and morphological parameters in 3D cell cultures: Evaluation in LoVo spheroids treated with crizotinib. PLoS ONE, 2021, 16, e0252907.	1.1	4
8	Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers, 2021, 13, 3825.	2.0	20
9	A Reliable Flow-Based Method for the Accurate Measure of Mass Density, Size and Weight of Live 3D Tumor Spheroids. Micromachines, 2020, 11, 465.	1.4	16
10	Articular Cartilage Regeneration in Osteoarthritis. Cells, 2019, 8, 1305.	1.8	113
11	Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone and Joint Research, 2019, 8, 101-106.	1.3	65
12	Short-Term Homing of Hyaluronan-Primed Cells: Therapeutic Implications for Osteoarthritis Treatment. Tissue Engineering - Part C: Methods, 2018, 24, 121-133.	1.1	26
13	Comparison of growth factor and interleukin content of adult peripheral blood and cord blood serum eye drops for cornea and ocular surface diseases. Transfusion and Apheresis Science, 2018, 57, 549-555.	0.5	31
14	Three-Dimensional Bioprinting of Cartilage by the Use of Stem Cells: A Strategy to Improve Regeneration. Materials, 2018, 11, 1749.	1.3	73
15	Cultures of a human synovial cell line to evaluate platelet-rich plasma and hyaluronic acid effects. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1835-1842.	1.3	9
16	PRP and MSCs on tenocytes artificial wound healing: an in vitro study comparing fresh and frozen PRP. Histology and Histopathology, 2018, 33, 1323-1334.	0.5	10
17	Repair Potential of Matrix-Induced Bone Marrow Aspirate Concentrate and Matrix-Induced Autologous Chondrocyte Implantation for Talar Osteochondral Repair. Cartilage, 2017, 8, 50-60.	1.4	24
18	Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Materials Science and Engineering C, 2017, 78, 1246-1262.	3.8	919

CAROLA CAVALLO

#	Article	IF	CITATIONS
19	Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. BioMed Research International, 2016, 2016, 1-7.	0.9	172
20	Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair. Tissue Engineering - Part C: Methods, 2016, 22, 608-619.	1.1	46
21	Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 374-391.	1.3	20
22	Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 173.	1.7	18
23	All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget, 2015, 6, 29914-29928.	0.8	69
24	Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?. BioMed Research International, 2014, 2014, 1-10.	0.9	64
25	Comparison of Platelet-Rich Plasma Formulations for Cartilage Healing. Journal of Bone and Joint Surgery - Series A, 2014, 96, 423-429.	1.4	163
26	Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Research and Therapy, 2013, 15, R22.	1.6	177
27	Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: Rationale for its use in the treatment of cartilage lesions. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1559-1570.	2.1	23
28	Early-Term Effect of Adult Chondrocyte Transplantation in an Osteoarthritis Animal Model. Tissue Engineering - Part A, 2012, 18, 1617-1627.	1.6	12
29	Ultrastructural analysis of human bone marrow mesenchymal stem cells during in vitro osteogenesis and chondrogenesis. Microscopy Research and Technique, 2012, 75, 596-604.	1.2	18
30	Engineered Cartilage Maturation Regulates Cytokine Production and Interleukin-1β Response. Clinical Orthopaedics and Related Research, 2011, 469, 2773-2784.	0.7	32
31	Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. Journal of Cellular Biochemistry, 2011, 112, 1418-1430.	1.2	46
32	Chondrocytes from patients with osteoarthritis express typical extracellular matrix molecules once grown onto a threeâ€dimensional hyaluronanâ€based scaffold. Journal of Biomedical Materials Research - Part A, 2010, 93A, 86-95.	2.1	42
33	Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: From open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury, 2010, 41, 1196-1203.	0.7	170
34	Osteoarthritis Treated with Mesenchymal Stem Cells on Hyaluronan-Based Scaffold in Rabbit. Tissue Engineering - Part C: Methods, 2009, 15, 647-658.	1.1	127
35	Ligament repair: A molecular and immunohistological characterization. Journal of Biomedical Materials Research - Part A, 2008, 84A, 117-127.	2.1	17
36	CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology, 2007, 210, 798-806.	2.0	63

CAROLA CAVALLO

#	Article	IF	CITATIONS
37	CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. Journal of Cellular Physiology, 2006, 206, 78-85.	2.0	79
38	Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. Journal of Cellular Physiology, 2006, 207, 364-373.	2.0	90
39	Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials, 2005, 26, 5677-5686.	5.7	117
40	IL1β and TNFα differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Experimental Gerontology, 2004, 39, 659-665.	1.2	41
41	Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochemistry and Cell Biology, 2003, 120, 391-400.	0.8	72