Martin Urschler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anatomy-Aware Inference of the 3D Standing Spine Posture from 2D Radiographs. Tomography, 2022, 8, 479-496.	1.8	2
2	Automated pneumothorax triaging in chest Xâ€rays in the New Zealand population using deepâ€learning algorithms. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 1035-1043.	1.8	12
3	Bone age estimation with the Greulich-Pyle atlas using 3T MR images of hand and wrist. Forensic Science International, 2021, 319, 110654.	2.2	19
4	A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Medical Image Analysis, 2021, 71, 102080.	11.6	72
5	VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Medical Image Analysis, 2021, 73, 102166.	11.6	112
6	Curation of the CANDID-PTX Dataset with Free-Text Reports. Radiology: Artificial Intelligence, 2021, 3, e210136.	5.8	5
7	SymbioLCD: Ensemble-Based Loop Closure Detection using CNN-Extracted Objects and Visual Bag-of-Words. , 2021, , .		5
8	The four-minute approach revisited: accelerating MRI-based multi-factorial age estimation. International Journal of Legal Medicine, 2020, 134, 1475-1485.	2.2	9
9	Uncertainty Estimation in Landmark Localization Based on Gaussian Heatmaps. Lecture Notes in Computer Science, 2020, , 42-51.	1.3	2
10	Coarse to Fine Vertebrae Localization and Segmentation with SpatialConfiguration-Net and U-Net. , 2020, , .		41
11	Automated age estimation from MRI volumes of the hand. Medical Image Analysis, 2019, 58, 101538.	11.6	44
12	Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge. Medical Image Analysis, 2019, 58, 101537.	11.6	180
13	Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks. Medical Image Analysis, 2019, 57, 106-119.	11.6	42
14	Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Medical Image Analysis, 2019, 54, 207-219.	11.6	191
15	Quantitative CTâ€derived vessel metrics in idiopathic pulmonary fibrosis: A structure–function study. Respirology, 2019, 24, 445-452.	2.3	17
16	Evaluating Spatial Configuration Constrained CNNs for Localizing Facial and Body Pose Landmarks. , 2019, , .		0
17	Automatic Age Estimation and Majority Age Classification From Multi-Factorial MRI Data. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1392-1403.	6.3	45
18	Matwo-CapsNet: A Multi-label Semantic Segmentation Capsules Network. Lecture Notes in Computer Science, 2019, , 664-672.	1.3	17

MARTIN URSCHLER

#	Article	IF	CITATIONS
19	Reducing acquisition time for MRI-based forensic age estimation. Scientific Reports, 2018, 8, 2063.	3.3	14
20	Integrated computer-aided forensic case analysis, presentation, and documentation based on multimodal 3D data. Forensic Science International, 2018, 287, 12-24.	2.2	22
21	Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Medical Image Analysis, 2018, 43, 23-36.	11.6	55
22	Sparse-View CT Reconstruction Using Wasserstein GANs. Lecture Notes in Computer Science, 2018, , 75-82.	1.3	13
23	Instance Segmentation and Tracking with Cosine Embeddings and Recurrent Hourglass Networks. Lecture Notes in Computer Science, 2018, , 3-11.	1.3	46
24	Healthy Lung Vessel Morphology Derived From Thoracic Computed Tomography. Frontiers in Physiology, 2018, 9, 346.	2.8	13
25	Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations. Lecture Notes in Computer Science, 2018, , 190-198.	1.3	59
26	Pulmonary Lobe Segmentation in CT Images using Alpha-Expansion. , 2018, , .		5
27	Detection and volume estimation of artificial hematomas in the subcutaneous fatty tissue: comparison of different MR sequences at 3.0 T. Forensic Science, Medicine, and Pathology, 2017, 13, 135-144.	1.4	3
28	Forensic age estimation by morphometric analysis of the manubrium from 3D MR images. Forensic Science International, 2017, 277, 21-29.	2.2	15
29	Multi-factorial Age Estimation from Skeletal and Dental MRI Volumes. Lecture Notes in Computer Science, 2017, , 61-69.	1.3	12
30	Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: A grand challenge. Medical Image Analysis, 2017, 35, 327-344.	11.6	59
31	Gland segmentation in colon histology images: The glas challenge contest. Medical Image Analysis, 2017, 35, 489-502.	11.6	516
32	Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization. PeerJ, 2017, 5, e3874.	2.0	97
33	Applicability of Greulich–Pyle and Tanner–Whitehouse grading methods to MRI when assessing hand bone age in forensic age estimation: A pilot study. Forensic Science International, 2016, 266, 281-288.	2.2	32
34	A multi-center milestone study of clinical vertebral CT segmentation. Computerized Medical Imaging and Graphics, 2016, 49, 16-28.	5.8	104
35	Automated integer programming based separation of arteries and veins from thoracic CT images. Medical Image Analysis, 2016, 34, 109-122.	11.6	35
36	From individual hand bone age estimates to fully automated age estimation via learning-based		14

information fusion., 2016, , .

MARTIN URSCHLER

#	Article	IF	CITATIONS
37	Automatic localization of locally similar structures based on the scale-widening random regression forest. , 2016, , .		2
38	Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy. Journal of Neuroscience Methods, 2016, 264, 16-24.	2.5	8
39	Automated Age Estimation from Hand MRI Volumes Using Deep Learning. Lecture Notes in Computer Science, 2016, , 194-202.	1.3	15
40	From Local to Global Random Regression Forests: Exploring Anatomical Landmark Localization. Lecture Notes in Computer Science, 2016, , 221-229.	1.3	13
41	Regressing Heatmaps for Multiple Landmark Localization Using CNNs. Lecture Notes in Computer Science, 2016, , 230-238.	1.3	144
42	Automatic Intervertebral Disc Localization and Segmentation in 3D MR Images Based on Regression Forests and Active Contours. Lecture Notes in Computer Science, 2016, , 130-140.	1.3	0
43	Anatomical Landmark Detection in Medical Applications Driven by Synthetic Data. , 2015, , .		13
44	Dental age estimation of living persons: Comparison of MRI with OPG. Forensic Science International, 2015, 253, 76-80.	2.2	49
45	Assessment of fiducial markers to enable the co-registration of photographs and MRI data. Forensic Science International, 2015, 248, 148-153.	2.2	4
46	Vertebrae Segmentation in 3D CT Images Based on a Variational Framework. Lecture Notes in Computational Vision and Biomechanics, 2015, , 227-233.	0.5	16
47	What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents. Annals of Human Biology, 2015, 42, 358-367.	1.0	31
48	You Should Use Regression to Detect Cells. Lecture Notes in Computer Science, 2015, , 276-283.	1.3	74
49	Automatic Artery-Vein Separation from Thoracic CT Images Using Integer Programming. Lecture Notes in Computer Science, 2015, , 36-43.	1.3	1
50	Towards Automatic Bone Age Estimation from MRI: Localization of 3D Anatomical Landmarks. Lecture Notes in Computer Science, 2014, 17, 421-428.	1.3	31
51	Determination of legal majority age from 3D magnetic resonance images of the radius bone. , 2014, , .		Ο
52	Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Medical Image Analysis, 2014, 18, 1217-1232.	11.6	131
53	Intuitive presentation of clinical forensic data using anonymous and person-specific 3D reference manikins. Forensic Science International, 2014, 241, 155-166.	2.2	22
54	Fully Automatic Bone Age Estimation from Left Hand MR Images. Lecture Notes in Computer Science, 2014, 17, 220-227.	1.3	18

MARTIN URSCHLER

#	Article	IF	CITATIONS
55	Quantification of Tortuosity and Fractal Dimension of the Lung Vessels in Pulmonary Hypertension Patients. PLoS ONE, 2014, 9, e87515.	2.5	83
56	Memory Efficient 3D Integral Volumes. , 2013, , .		4
57	Forensic-Case Analysis: From 3D Imaging to Interactive Visualization. IEEE Computer Graphics and Applications, 2012, 32, 79-87.	1.2	22
58	Learning Edge-Specific Kernel Functions For Pairwise Graph Matching. , 2012, , .		0
59	Highly Consistent Sequential Segmentation. Lecture Notes in Computer Science, 2011, , 48-58.	1.3	2
60	Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge. IEEE Transactions on Medical Imaging, 2011, 30, 1901-1920.	8.9	363
61	Intensity-Based Congealing for Unsupervised Joint Image Alignment. , 2010, , .		6
62	Optical flow based deformable volume registration using a novel second-order regularization prior. Proceedings of SPIE, 2010, , .	0.8	0
63	Occlusion detection for ICAO compliant facial photographs. , 2010, , .		12
64	Efficient Robust Active Appearance Model Fitting. Communications in Computer and Information Science, 2010, , 229-241.	0.5	0
65	Saliency driven total variation segmentation. , 2009, , .		178
66	3D-MAM: 3D morphable appearance model for efficient fine head pose estimation from still images. , 2009, , .		21
67	Fast-Robust PCA. Lecture Notes in Computer Science, 2009, , 430-439.	1.3	15
68	Classifier fusion for robust ICAO compliant face analysis. , 2008, , .		2
69	A Duality Based Algorithm for TV-L 1-Optical-Flow Image Registration. , 2007, 10, 511-518.		51
70	A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Registration Algorithms. The Insight Journal, 2007, , .	0.2	14
71	SIFT and Shape Context for Feature-Based Nonlinear Registration of Thoracic CT Images. Lecture Notes in Computer Science, 2006, , 73-84.	1.3	31
72	A New Registration/Visualization Paradigm for CT-Fluoroscopy Guided RF Liver Ablation. Lecture Notes in Computer Science, 2006, 9, 882-890.	1.3	7

8

#	Article	IF	CITATIONS
73	Automatic Point Landmark Matching for Regularizing Nonlinear Intensity Registration: Application to Thoracic CT Images. Lecture Notes in Computer Science, 2006, 9, 710-717.	1.3	12

Assessing breathing motion by shape matching of lung and diaphragm surfaces. , 2005, , .