Nader Shehata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790666/publications.pdf

Version: 2024-02-01

53	659	14	22
papers	citations	h-index	g-index
55	55	55	821
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell. Plasmonics, 2022, 17, 581-595.	1.8	5
2	Developing optical up-conversion process via embedded silver nanostructures. Journal of Luminescence, 2022, 244, 118717.	1.5	3
3	Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Scientific Reports, 2022, 12, 8335.	1.6	16
4	Antibacterial Synergism of Electrospun Nanofiber Mats Functioned with Silver Nanoparticles and Pulsed Electromagnetic Waves. Polymers, 2021, 13, 277.	2.0	8
5	Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments. Polymers, 2021, 13, 1776.	2.0	15
6	Study of Air Pressure and Velocity for Solution Blow Spinning of Polyvinylidene Fluoride Nanofibres. Processes, 2021, 9, 1014.	1.3	2
7	Enhancement of Nano-Biopolymer Antibacterial Activity by Pulsed Electric Fields. Polymers, 2021, 13, 1869.	2.0	8
8	Biodegradable Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19 and Anti-Multidrug Resistant Bacteria Evaluation. Materials, 2021, 14, 3862.	1.3	11
9	Solution blow spinning of piezoelectric nanofiber mat for detecting mechanical and acoustic signals. Journal of Applied Polymer Science, 2021, 138, 51322.	1.3	9
10	Decay Rates of Plasmonic Elliptical Nanostructures via Effective Medium Theory. Nanomaterials, 2021, 11, 1928.	1.9	2
11	Elastic Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19, and Anti-Colistin Resistant Bacteria Evaluation. Polymers, 2021, 13, 3987.	2.0	11
12	Perovskite Solar Cell with Added Gold/Silver Nanoparticles: Enhanced Optical and Electrical Characteristics. Energies, 2020, 13, 3854.	1.6	12
13	Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results. Polymers, 2020, 12, 1140.	2.0	12
14	Acoustic Energy Harvesting and Sensing via Electrospun PVDF Nanofiber Membrane. Sensors, 2020, 20, 3111.	2.1	19
15	Solution Blow Spinning of Polyvinylidene Fluoride Based Fibers for Energy Harvesting Applications: A Review. Polymers, 2020, 12, 1304.	2.0	22
16	Gold/QDs-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement as a Quenching Sensor. Applied Sciences (Switzerland), 2020, 10, 1236.	1.3	5
17	In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen. Nanomaterials, 2020, 10, 314.	1.9	7
18	Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization. Polymers, 2019, 11, 1634.	2.0	26

#	Article	IF	Citations
19	Temperature impact on upconversion efficiency and luminescence of Erbium-doped ceria-plasmonic nanostructure., 2019,,.		О
20	Investigation of Conical Spinneret in Generating More Dense and Compact Electrospun Nanofibers. Polymers, 2018, 10, 12.	2.0	15
21	Cognitive Band Manipulations using Twistable Paper-based Antenna for IoT Applications. , 2018, , .		0
22	Polyvinylidene Difluoride Piezoelectric Electrospun Nanofibers: Review in Synthesis, Fabrication, Characterizations, and Applications. Journal of Nanomaterials, 2018, 2018, 1-12.	1.5	31
23	Electrospun PVA Polymer Embedded with Ceria Nanoparticles as Silicon Solar Cells Rear Surface Coaters for Efficiency Improvement. Polymers, 2018, 10, 609.	2.0	6
24	Plasmonic-Ceria Nanoparticles as Fluorescence Intensity and Lifetime Quenching Optical Sensor. Sensors, 2018, 18, 2818.	2.1	6
25	Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/MWCNT Composite Membrane: Facile Method. Polymers, 2018, 10, 965.	2.0	28
26	Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study. Materials, 2018, 11, 1626.	1.3	27
27	Impact of Electro-Magneto Concave Collector on the Characterizations of Electrospun Nanofibers. Journal of Electronic Materials, 2018, 47, 4772-4779.	1.0	7
28	Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk Nanofibers. Nanomaterials, 2018, 8, 585.	1.9	12
29	Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency. Nanomaterials, 2018, 8, 357.	1.9	1
30	Optical fluorescent spider silk electrospun nanofibers with embedded cerium oxide nanoparticles. Journal of Nanophotonics, $2018,12,1.$	0.4	10
31	Efficiency improvement of up-conversion process of plasmonic-enhanced Er-doped-NaYF ₄ nanoparticles under IR excitation. Optics Express, 2018, 26, 25492.	1.7	9
32	Hybrid Intelligence Nano-enriched Sensing and Management System for Efficient Water-Quality Monitoring. Lecture Notes in Networks and Systems, 2018, , 584-604.	0.5	0
33	Fluorescence intensity and lifetime quenching of ceria nanoparticles as optical sensor for tiny metallic particles. Journal of Nanophotonics, $2018, 12, 1$.	0.4	1
34	Plasmonic-ceria nanoparticles for automated optical fluorescence-quenching of dissolved oxygen. , 2018, , .		1
35	Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Electrospun Chitosan Nanofibers. Journal of Fluorescence, 2017, 27, 767-772.	1.3	5
36	Flexible paper-based wideband antenna for compact-size IoT devices., 2017,,.		16

#	Article	IF	Citations
37	System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring. Journal of Sensors, 2016, 2016, 1-13.	0.6	2
38	Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers. Nanomaterials, 2016, 6, 102.	1.9	11
39	Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals. Sensors, 2016, 16, 1371.	2.1	22
40	Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique. Journal of Nanophotonics, 2016, 10, 036002.	0.4	2
41	Parametric study of up-conversion efficiency in Er-doped ceria nanoparticles under 780 nm excitation. Journal of Luminescence, 2016, 176, 372-380.	1.5	7
42	Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780Ânm/980Ânm Excitation Wavelengths. Journal of Electronic Materials, 2016, 45, 2732-2744.	1.0	7
43	Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen. Sensors, 2015, 15, 20193-20203.	2.1	16
44	Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance. Materials, 2015, 8, 7663-7672.	1.3	23
45	Improved Electrical Conductivity of Carbon/Polyvinyl Alcohol Electrospun Nanofibers. Journal of Nanomaterials, 2015, 2015, 1-5.	1.5	9
46	Characteristics and 3D formation of PVA and PEO electrospun nanofibers with embedded urea. Journal of Applied Polymer Science, 2014, 131, .	1.3	14
47	Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical downand up-conversions. Nanoscale Research Letters, 2014, 9, 231.	3.1	33
48	Studying the activity of antitubercluosis drugs inside electrospun polyvinyl alcohol, polyethylene oxide, and polycaprolacton nanofibers. Journal of Biomedical Materials Research - Part A, 2014, 102, 4009-4016.	2.1	6
49	Lanthanide-doped ceria nanoparticles as fluorescence-quenching probes for dissolved oxygen. Sensors and Actuators B: Chemical, 2013, 183, 179-186.	4.0	24
50	Study of Fluorescence Quenching in Aluminum-Doped Ceria Nanoparticles: Potential Molecular Probe for Dissolved Oxygen. Journal of Fluorescence, 2013, 23, 527-532.	1.3	10
51	Fluorescence quenching in ceria nanoparticles: dissolved oxygen molecular probe with relatively temperature insensitive Stern–Volmer constant up to 50°C. Journal of Nanophotonics, 2012, 6, 063529.	0.4	9
52	Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	92
53	Dissolved oxygen sensing based on fluorescence quenching of ceria nanoparticles. Proceedings of SPIE, 2012, , .	0.8	3