Ding-Shan Yu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3790543/ding-shan-yu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

127
papers13,119
citations44
h-index114
g-index141
ext. papers14,404
ext. citations9.6
avg, IF6.71
L-index

#	Paper	IF	Citations
127	Cutting COF-like C4N into Colloidal Quantum Dots toward Optical Encryption and Bidirectional Sulfur Chemistry via Functional Group and Edge Effects. <i>Angewandte Chemie - International Edition</i> , 2021 , e202114182	16.4	1
126	Redox Donor-Acceptor Conjugated Microporous Polymers as Ultralong-Lived Organic Anodes for Rechargeable Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10164-10171	16.4	14
125	Redox Donor Acceptor Conjugated Microporous Polymers as Ultralong-Lived Organic Anodes for Rechargeable Air Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 10252-10259	3.6	3
124	Recent Advances in Elongational Flow Dominated Polymer Processing Technologies. <i>Polymers</i> , 2021 , 13,	4.5	1
123	Preparation of Flame-Retardant Polyurethane and Its Applications in the Leather Industry. <i>Polymers</i> , 2021 , 13,	4.5	5
122	Capturing Visible Light in Low-Band-Gap C4N-Derived Responsive Bifunctional Air Electrodes for Solar Energy Conversion and Storage. <i>Angewandte Chemie</i> , 2021 , 133, 17756-17762	3.6	4
121	Capturing Visible Light in Low-Band-Gap C N-Derived Responsive Bifunctional Air Electrodes for Solar Energy Conversion and Storage. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17615-1762	1 ^{16.4}	9
120	Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals. <i>Polymers</i> , 2021 , 13,	4.5	1
119	Octupolar Acrylonitrile-Bridged 2D-Conjugated Polymers Enable Bright Far-Red Emission with Intense Two-Photon Absorption via Alkoxylation Chemistry. <i>Small</i> , 2021 , 17, e2100955	11	2
118	Harvesting Air and Light Energy via All-in-Onel Polymer Cathodes for High-Capacity, Self-Chargeable, and Multimode-Switching Zinc Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2007	7942	17
117	Alkene-Linked Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Evolution by Efficient Charge Separation and Transfer in the Presence of Sacrificial Electron Donors. <i>Advanced Science</i> , 2020 , 7, 1902988	13.6	31
116	Black phosphorus quantum dots as an effective perovskite interfacial modification layer for efficient low-temperature processed all-inorganic CsPbI2Br perovskite solar cells. <i>Solar Energy</i> , 2020 , 206, 793-798	6.8	8
115	Chain conformation and dynamics in ultrahigh molecular weight polyethylene melts undergoing extensional hear coupled flow: insight from dissipative particle dynamics simulation. <i>Polymer International</i> , 2020 , 69, 1213-1219	3.3	2
114	Pyrazinefiltrogenfich exfoliated C4N nanosheets as efficient metalfiree polymeric catalysts for oxygen reduction reaction. <i>Journal of Energy Chemistry</i> , 2020 , 49, 243-247	12	15
113	Integrated Photo-Responsive Batteries for Solar Energy Harnessing: Recent Advances, Challenges, and Opportunities. <i>ChemPlusChem</i> , 2020 , 85, 599	2.8	2
112	Recoverable Photolithographic Patterning for Polarized Display and Encryption. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000373	6.8	12
111	Multibranched Octupolar Module Embedded Covalent Organic Frameworks Enable Efficient Two-Photon Fluorescence. <i>Advanced Functional Materials</i> , 2020 , 30, 2000516	15.6	19

110	Polyaniline/Pure Carbon Assemblies as Efficient Self-standing Metal-free Oxygen Electrodes in Alkaline Media for Zn-Air Batteries. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1544-1548	4.5	16
109	Versatile, Aqueous Soluble CN Quantum Dots with Enriched Active Edges and Oxygenated Groups. Journal of the American Chemical Society, 2020 , 142, 4621-4630	16.4	24
108	Humidity and Pressure Dual-Responsive Metal-Water Batteries Enabled by Three-In-One All-Polymer Cathodes for Smart Self-Powered Systems. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 23853-23859	9.5	5
107	Integrated Photo-Responsive Batteries for Solar Energy Harnessing: Recent Advances, Challenges, and Opportunities. <i>ChemPlusChem</i> , 2020 , 85, 600-612	2.8	16
106	Crosslinked cyanometallatethitosan nanosheet assembled aerogels as efficient catalysts to boost polysulfide redox kinetics in lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19262-192	268	7
105	Innentitelbild: DonorAcceptor Nanocarbon Ensembles to Boost Metal-Free All-pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. 45/2019). <i>Angewandte Chemie</i> , 2019 , 131, 16086-16086	3.6	
104	Preparation and flame-retardant mechanism of polyheptazine/PA6 nanocmposites. <i>Polymer</i> , 2019 , 182, 121810	3.9	7
103	Boosting Oxygen Reduction Performance of Manganese Oxide in Alkaline Media by Three-Dimensional Highly Ordered Conductive Porous Framework. <i>Frontiers in Materials</i> , 2019 , 6,	4	2
102	Conjugated polymer dots/graphitic carbon nitride nanosheet heterojunctions for metal-free hydrogen evolution photocatalysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 303-311	13	40
101	Photoresponsive Actuators Built from Carbon-Based Soft Materials. <i>Advanced Optical Materials</i> , 2019 , 7, 1900069	8.1	55
100	Tactile UV- and Solar-Light Multi-Sensing Rechargeable Batteries with Smart Self-Conditioned Charge and Discharge. <i>Angewandte Chemie</i> , 2019 , 131, 9349-9354	3.6	4
99	Tactile UV- and Solar-Light Multi-Sensing Rechargeable Batteries with Smart Self-Conditioned Charge and Discharge. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9248-9253	16.4	30
98	Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4972-4979	16.4	158
97	Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study. <i>Polymers</i> , 2019 , 11,	4.5	15
96	A review of rechargeable batteries for portable electronic devices. <i>Informal</i> (IM) Materilly, 2019 , 1, 6-32	23.1	400
95	Extensional-shear coupled flow-induced morphology and phase evolution of polypropylene/ultrahigh molecular weight polyethylene blends: Dissipative particle dynamics simulations and experimental studies. <i>Polymer</i> , 2019 , 169, 36-45	3.9	9
94	Improving Dielectric Properties and Thermostability of CaCu3Ti4O12/Polyimide Composites by Employing Surface Hydroxylated CaCu3Ti4O12 Particles. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 1263-1	2 17 ² 1	6
93	3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries. <i>Energy Storage Materials</i> 2019 17, 293-299	19.4	51

92	Donor-Acceptor Nanocarbon Ensembles to Boost Metal-Free All-pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16217-16222	16.4	32
91	A Dissipative Particle Dynamics Study of Flow Behaviors in Ultra High Molecular Weight Polyethylene/Polyamide 6 Blends Based on Souza-Martins Method. <i>Polymers</i> , 2019 , 11,	4.5	2
90	InnenrEktitelbild: Tactile UV- and Solar-Light Multi-Sensing Rechargeable Batteries with Smart Self-Conditioned Charge and Discharge (Angew. Chem. 27/2019). <i>Angewandte Chemie</i> , 2019 , 131, 9389-	-9389	1
89	A high-performance, highly bendable quasi-solid-state zinc@rganic battery enabled by intelligent proton-self-buffering copolymer cathodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17292-17298	13	33
88	Donor Acceptor Nanocarbon Ensembles to Boost Metal-Free All-pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation. <i>Angewandte Chemie</i> , 2019 , 131, 16363-16368	3.6	6
87	New insight into residual stresses in amine-grafted MWCNTs/binary resin composites under complex thermomechanical loadings. <i>Journal of Thermoplastic Composite Materials</i> , 2019 , 32, 1445-145	4 ^{1.9}	
86	Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithiumBulfur batteries: Fully-exposed porphyrin matters. <i>Energy Storage Materials</i> , 2019 , 22, 40-47	19.4	61
85	Self-Assembled Graphene Nanostructures and Their Applications 2018 , 39-74		
84	Structure and properties of ultrahigh molecular weight polyethylene processed under a consecutive elongational flow. <i>Journal of Polymer Research</i> , 2018 , 25, 1	2.7	9
83	Integrative solar absorbers for highly efficient solar steam generation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4642-4648	13	96
82	Effective Dual Polysulfide Rejection by a Tannic Acid/Fe Complex-Coated Separator in Lithium-Sulfur Batteries. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 12708-12715	9.5	29
81	Phase behavior and alignment transition of ultra high molecular weight polyethylene/polyamide 6 blends under extensional and shear flow. <i>Computational Materials Science</i> , 2018 , 149, 21-27	3.2	4
80	Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow. <i>Applied Composite Materials</i> , 2018 , 25, 35-43	2	8
79	Self-Assembled Graphene-Based Architectures and Their Applications. <i>Advanced Science</i> , 2018 , 5, 17006	5 26 .6	50
78	Bioinspired Mesoporous Chiral Nematic Graphitic Carbon Nitride Photocatalysts modulated by Polarized Light. <i>ChemSusChem</i> , 2018 , 11, 114-119	8.3	24
77	Rapid colorimetric glucose detection chain reaction amplification of acrylic functionalized Ag@SiO nanoparticles <i>RSC Advances</i> , 2018 , 8, 37729-37734	3.7	6
76	Commercial Fiber Products Derived Free-Standing Porous Carbonized-Membranes for Highly Efficient Solar Steam Generation. <i>Frontiers in Materials</i> , 2018 , 5,	4	10
75	In Situ Activating Strategy to Significantly Boost Oxygen Electrocatalysis of Commercial Carbon Cloth for Flexible and Rechargeable Zn-Air Batteries. <i>Advanced Science</i> , 2018 , 5, 1800760	13.6	64

(2015-2018)

74	Boosting water oxidation on metal-free carbon nanotubes via directional interfacial charge-transfer induced by an adsorbed polyelectrolyte. <i>Energy and Environmental Science</i> , 2018 , 11, 3334-3341	35.4	70
73	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. <i>Energy and Environmental Science</i> , 2017 , 10, 893-899	35.4	342
72	A General Electrode Design Strategy for Flexible Fiber Micro-Pseudocapacitors Combining Ultrahigh Energy and Power Delivery. <i>Advanced Science</i> , 2017 , 4, 1700003	13.6	38
71	One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 14953-14959	9.5	32
70	A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. <i>Energy and Environmental Science</i> , 2017 , 10, 2312-2317	35.4	81
69	Bifunctional MOF-Derived Carbon Photonic Crystal Architectures for Advanced ZnAir and LiB Batteries: Highly Exposed Graphitic Nitrogen Matters. <i>Advanced Functional Materials</i> , 2017 , 27, 1701971	1 ^{15.6}	121
68	New insights into a first principle calculation and experimental study of Sn-Pb-Ge ternary-metal perovskites for potential photovoltaic application. <i>Materials Science in Semiconductor Processing</i> , 2017 , 68, 159-164	4.3	5
67	Cross-Linked Graphitic Carbon Nitride with Photonic Crystal Structure for Efficient Visible-Light-Driven Photocatalysis. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Disco</i>	9.5	19
66	Material Based Structure Design: Numerical Analysis Thermodynamic Response of Thermal Pyrolytic Graphite /Al Sandwich Composites. <i>Applied Composite Materials</i> , 2016 , 23, 1167-1176	2	4
65	Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. <i>Scientific Reports</i> , 2016 , 6, 20142	4.9	110
64	Freestanding Graphitic Carbon Nitride Photonic Crystals for Enhanced Photocatalysis. <i>Advanced Functional Materials</i> , 2016 , 26, 4943-4950	15.6	105
63	Plasmonic effects and the morphology changes on the active material P3HT:PCBM used in polymer solar cells using Raman spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2016 , 47, 888-894	2.3	7
62	Graphene-based materials for polymer solar cells. <i>Chinese Chemical Letters</i> , 2016 , 27, 1259-1270	8.1	29
61	Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. <i>Nano Energy</i> , 2016 , 26, 216-223	17.1	64
60	A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7210-7214	13	63
59	Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances. <i>Nanotechnology</i> , 2015 , 26, 314003	3.4	13
58	Rational design of metallic nanowire-based plasmonic architectures for efficient inverted polymer solar cells. <i>Solar Energy</i> , 2015 , 122, 231-238	6.8	12
57	Emergence of fiber supercapacitors. <i>Chemical Society Reviews</i> , 2015 , 44, 647-62	58.5	433

56	Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. <i>Journal of Solid State Chemistry</i> , 2015 , 224, 45-51	3.3	16
55	Catalysts for chirality selective synthesis of single-walled carbon nanotubes. <i>Carbon</i> , 2015 , 81, 1-19	10.4	92
54	All-Carbon Nanoarchitectures as High-Performance Separation Membranes with Superior Stability. <i>Advanced Functional Materials</i> , 2015 , 25, 7348-7359	15.6	195
53	Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors. <i>Advanced Materials</i> , 2015 , 27, 4895-901	24	176
52	E. coli-derived carbon with nitrogen and phosphorus dual functionalities for oxygen reduction reaction. <i>Catalysis Today</i> , 2015 , 249, 228-235	5.3	12
51	Ternary Hybrids of Amorphous Nickel Hydroxidellarbon Nanotube-Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. <i>Advanced Functional Materials</i> , 2015 , 25, 1063-1073	15.6	264
50	Graphene-based nanowire supercapacitors. <i>Langmuir</i> , 2014 , 30, 3567-71	4	62
49	Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. <i>Nature Nanotechnology</i> , 2014 , 9, 555-62	28.7	1161
48	Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. <i>Small</i> , 2014 , 10, 2251-9	11	525
47	Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density. <i>Advanced Materials</i> , 2014 , 26, 6790-7	24	217
46	Multifunctional nitrogen-rich Brick-and-mortarlarbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11061	13	32
45	Significantly Enhanced Actuation Performance of IPMC by Surfactant-Assisted Processable MWCNT/Nafion Composite. <i>Journal of Bionic Engineering</i> , 2013 , 10, 359-367	2.7	17
44	Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors. <i>Nanoscale</i> , 2013 , 5, 11108-17	7.7	29
43	CoSO4/SiO2 catalyst for selective synthesis of (9, 8) single-walled carbon nanotubes: Effect of catalyst calcination. <i>Journal of Catalysis</i> , 2013 , 300, 91-101	7.3	34
42	Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. <i>Nanoscale</i> , 2013 , 5, 3457-64	7.7	140
41	Sulfur doped Co/SiO2 catalysts for chirally selective synthesis of single walled carbon nanotubes. <i>Chemical Communications</i> , 2013 , 49, 2031-3	5.8	23
40	Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12220-6	3.6	260
39	Vertically Aligned Carbon Nanotube Arrays Co-doped with Phosphorus and Nitrogen as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2863-7	76·4	269

38	Organo-soluble porphyrin mixed monolayer-protected gold nanorods with intercalated fullerenes. <i>Langmuir</i> , 2012 , 28, 5956-63	4	30
37	Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. <i>Advanced Materials</i> , 2012 , 24, 2228-33	24	256
36	Graphene Oxide Derivatives: Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells (Adv. Mater. 17/2012). <i>Advanced Materials</i> , 2012 , 24, 2227-2227	24	5
35	Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes. <i>Applied Physics Letters</i> , 2012 , 101, 163701	3.4	13
34	Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. <i>ACS Nano</i> , 2011 , 5, 6202-9	16.7	617
33	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. <i>Chemistry of Materials</i> , 2011 , 23, 3987-3992	9.6	161
32	Preparation and Electrocatalytic Activity of Gold Nanoparticles Immobilized on the Surface of 4-Mercaptobenzoyl-Functionalized Multiwalled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 1746-1751	3.8	18
31	Preparation of Tunable 3D Pillared Carbon Nanotube@raphene Networks for High-Performance Capacitance. <i>Chemistry of Materials</i> , 2011 , 23, 4810-4816	9.6	342
30	Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. <i>Chemical Communications</i> , 2011 , 47, 11	68 ⁵ 9-91	158
29	Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. Journal of Physical Chemistry Letters, 2011 , 2, 1113-8	6.4	195
28	Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5182-5	16.4	616
27	Optical emission from disordered multi-branched ZnO nanorods formed by catalyst-free growth. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 103, 329-334	2.6	1
26	Asymmetrically Functionalized Graphene for Photodependent Diode Rectifying Behavior. <i>Angewandte Chemie</i> , 2011 , 123, 6705-6708	3.6	8
25	Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen. <i>Angewandte</i> <i>Chemie</i> , 2011 , 123, 11960-11964	3.6	120
24	Asymmetrically functionalized graphene for photodependent diode rectifying behavior. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6575-8	16.4	42
23	Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11756-60	16.4	650
22	Organo-soluble chiral thiol-monolayer-protected gold nanorods. <i>Langmuir</i> , 2011 , 27, 98-103	4	42
21	Self-Assembly of Gold Nanowires along Carbon Nanotubes for Ultrahigh-Aspect-Ratio Hybrids. Chemistry of Materials, 2011 , 23, 2760-2765	9.6	17

20	Voltage-induced incandescent light emission from large-area graphene films. <i>Applied Physics Letters</i> , 2010 , 96, 143107	3.4	28
19	Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 467-470	6.4	999
18	Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15127-9	16.4	563
17	Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. Journal of Physical Chemistry Letters, 2010 , 1, 2165-2173	6.4	477
16	Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. <i>ACS Nano</i> , 2010 , 4, 5633-40	16.7	415
15	Biocompatible graphene oxide-based glucose biosensors. <i>Langmuir</i> , 2010 , 26, 6158-60	4	592
14	Enhanced photoresponse of CdS/CMK-3 composite as a candidate for light-harvesting assembly. <i>Nanotechnology</i> , 2010 , 21, 045601	3.4	8
13	Growth of organicIhorganic hybrid nanowires based on p-hydroxybenzoic acid. <i>Materials Chemistry and Physics</i> , 2009 , 118, 203-207	4.4	
12	Nanocubes of PbS with visible luminescence synthesized by sulfonated polymer as stabilizer and modifier at room-temperature. <i>Materials Letters</i> , 2009 , 63, 2317-2320	3.3	6
11	Superhydrophobic electrospun POSS-PMMA copolymer fibres with highly ordered nanofibrillar and surface structures. <i>Chemical Communications</i> , 2009 , 6418-20	5.8	78
10	Temperature-dependent photoluminescence properties of synthesized schistoselike organic nanostructures. <i>Journal of Applied Physics</i> , 2008 , 103, 013104	2.5	2
9	Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. <i>Applied Physics Letters</i> , 2007 , 91, 091116	3.4	39
8	Fabrication and characterization of PbS/multiwalled carbon nanotube heterostructures. <i>Applied Physics Letters</i> , 2007 , 90, 161103	3.4	19
7	Optical properties of synthesized organic nanowires. <i>Applied Physics Letters</i> , 2006 , 89, 241121	3.4	6
6	Layer-by-Layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films. <i>Sensors and Actuators B: Chemical</i> , 2006 , 119, 512-515	8.5	83
5	Reflection-enhancing coatings from layer-by-layer self-assembled polyelectrolyte/colloidal TiO 2 multilayers 2005 , 5633, 470		
4	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals,1	5.5	1
3	Thermoresponsive behavior of non-isocyanate poly(hydroxyl)urethane for biomedical composite materials. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	O

LIST OF PUBLICATIONS

Adsorption characteristics and conformational transition of polyethylene glycolhaleated rosin polyesters on the waterBir surface. *Advanced Composites and Hybrid Materials*,1

8.7

1

Acrylonitrile-Linked Covalent Organic Frameworks Enable Fast Stimulus-Responsive Fluorescence with High Quantum Yield via Fluorine Chemistry. *Advanced Photonics Research*,2200008

1.9