List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790543/publications.pdf Version: 2024-02-01

		44042	16164
129	15,575	48	124
papers	citations	h-index	g-index
141 all docs	141 docs citations	141 times ranked	19856 citing authors

ΠΙΝC-SHAN YII

#	Article	IF	CITATIONS
1	Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 2014, 9, 555-562.	15.6	1,312
2	Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. Journal of Physical Chemistry Letters, 2010, 1, 467-470.	2.1	1,073
3	Vertically Aligned BCN Nanotubes as Efficient Metalâ€Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Coâ€Doping with Boron and Nitrogen. Angewandte Chemie - International Edition, 2011, 50, 11756-11760.	7.2	725
4	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
5	Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-free Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 5182-5185.	6.6	678
6	Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano, 2011, 5, 6202-6209.	7.3	672
7	Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir, 2010, 26, 6158-6160.	1.6	668
8	Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction. Journal of the American Chemical Society, 2010, 132, 15127-15129.	6.6	608
9	Nitrogenâ€Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction. Small, 2014, 10, 2251-2259.	5.2	571
10	Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. Journal of Physical Chemistry Letters, 2010, 1, 2165-2173.	2.1	529
11	Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44, 647-662.	18.7	498
12	Soluble P3HT-Grafted Graphene for Efficient Bilayerâ^'Heterojunction Photovoltaic Devices. ACS Nano, 2010, 4, 5633-5640.	7.3	451
13	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy and Environmental Science, 2017, 10, 893-899.	15.6	412
14	Preparation of Tunable 3D Pillared Carbon Nanotube–Graphene Networks for High-Performance Capacitance. Chemistry of Materials, 2011, 23, 4810-4816.	3.2	367
15	Vertically Aligned Carbon Nanotube Arrays Co-doped with Phosphorus and Nitrogen as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. Journal of Physical Chemistry Letters, 2012, 3, 2863-2870.	2.1	294
16	Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotubeâ€Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015, 25, 1063-1073.	7.8	288
17	Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 12220.	1.3	284
18	Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for Highâ€Performance Bulk Heterojunction Solar Cells. Advanced Materials, 2012, 24, 2228-2233.	11.1	279

#	Article	IF	CITATIONS
19	Allâ€Carbon Nanoarchitectures as Highâ€Performance Separation Membranes with Superior Stability. Advanced Functional Materials, 2015, 25, 7348-7359.	7.8	248
20	Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. Journal of the American Chemical Society, 2019, 141, 4972-4979.	6.6	247
21	Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2014, 26, 6790-6797.	11.1	243
22	Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. Journal of Physical Chemistry Letters, 2011, 2, 1113-1118.	2.1	216
23	Transforming Pristine Carbon Fiber Tows into High Performance Solidâ€State Fiber Supercapacitors. Advanced Materials, 2015, 27, 4895-4901.	11.1	193
24	Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chemical Communications, 2011, 47, 11689.	2.2	177
25	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. Chemistry of Materials, 2011, 23, 3987-3992.	3.2	171
26	Bifunctional MOFâ€Đerived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters. Advanced Functional Materials, 2017, 27, 1701971.	7.8	156
27	Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5, 3457.	2.8	154
28	Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Scientific Reports, 2016, 6, 20142.	1.6	136
29	Integrative solar absorbers for highly efficient solar steam generation. Journal of Materials Chemistry A, 2018, 6, 4642-4648.	5.2	135
30	Freestanding Graphitic Carbon Nitride Photonic Crystals for Enhanced Photocatalysis. Advanced Functional Materials, 2016, 26, 4943-4950.	7.8	122
31	A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy and Environmental Science, 2017, 10, 2312-2317.	15.6	113
32	Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon, 2015, 81, 1-19.	5.4	106
33	Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: Fully-exposed porphyrin matters. Energy Storage Materials, 2019, 22, 40-47.	9.5	100
34	Layer-by-Layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films. Sensors and Actuators B: Chemical, 2006, 119, 512-515.	4.0	93
35	Boosting water oxidation on metal-free carbon nanotubes <i>via</i> directional interfacial charge-transfer induced by an adsorbed polyelectrolyte. Energy and Environmental Science, 2018, 11, 3334-3341.	15.6	92
36	In Situ Activating Strategy to Significantly Boost Oxygen Electrocatalysis of Commercial Carbon Cloth for Flexible and Rechargeable Znâ€Air Batteries. Advanced Science, 2018, 5, 1800760.	5.6	91

#	Article	IF	CITATIONS
37	Alkene‣inked Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Evolution by Efficient Charge Separation and Transfer in the Presence of Sacrificial Electron Donors. Advanced Science, 2020, 7, 1902988.	5.6	85
38	Superhydrophobic electrospun POSS-PMMA copolymer fibres with highly ordered nanofibrillar and surface structures. Chemical Communications, 2009, , 6418.	2.2	83
39	Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. Nano Energy, 2016, 26, 216-223.	8.2	83
40	Photoresponsive Actuators Built from Carbonâ€Based Soft Materials. Advanced Optical Materials, 2019, 7, 1900069.	3.6	78
41	3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 293-299.	9.5	76
42	A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon. Journal of Materials Chemistry A, 2015, 3, 7210-7214.	5.2	75
43	Selfâ€Assembled Grapheneâ€Based Architectures and Their Applications. Advanced Science, 2018, 5, 1700626.	5.6	70
44	Graphene-Based Nanowire Supercapacitors. Langmuir, 2014, 30, 3567-3571.	1.6	68
45	Conjugated polymer dots/graphitic carbon nitride nanosheet heterojunctions for metal-free hydrogen evolution photocatalysis. Journal of Materials Chemistry A, 2019, 7, 303-311.	5.2	64
46	Multibranched Octupolar Module Embedded Covalent Organic Frameworks Enable Efficient Twoâ€₽hoton Fluorescence. Advanced Functional Materials, 2020, 30, 2000516.	7.8	56
47	Donor–Acceptor Nanocarbon Ensembles to Boost Metalâ€Free Allâ€pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation. Angewandte Chemie - International Edition, 2019, 58, 16217-16222.	7.2	52
48	Organo-Soluble Chiral Thiol-Monolayer-Protected Gold Nanorods. Langmuir, 2011, 27, 98-103.	1.6	48
49	Tactile UV―and Solarâ€Light Multiâ€Sensing Rechargeable Batteries with Smart Selfâ€Conditioned Charge and Discharge. Angewandte Chemie - International Edition, 2019, 58, 9248-9253.	7.2	48
50	Asymmetrically Functionalized Graphene for Photodependent Diode Rectifying Behavior. Angewandte Chemie - International Edition, 2011, 50, 6575-6578.	7.2	46
51	A General Electrode Design Strategy for Flexible Fiber Microâ€Pseudocapacitors Combining Ultrahigh Energy and Power Delivery. Advanced Science, 2017, 4, 1700003.	5.6	46
52	Redox Donor–Acceptor Conjugated Microporous Polymers as Ultralong‣ived Organic Anodes for Rechargeable Air Batteries. Angewandte Chemie - International Edition, 2021, 60, 10164-10171.	7.2	44
53	One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 14953-14959.	4.0	41
54	Effective Dual Polysulfide Rejection by a Tannic Acid/Fe ^{III} Complex-Coated Separator in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 12708-12715.	4.0	41

#	Article	IF	CITATIONS
55	A high-performance, highly bendable quasi-solid-state zinc–organic battery enabled by intelligent proton-self-buffering copolymer cathodes. Journal of Materials Chemistry A, 2019, 7, 17292-17298.	5.2	40
56	Integrated Photoâ€Responsive Batteries for Solar Energy Harnessing: Recent Advances, Challenges, and Opportunities. ChemPlusChem, 2020, 85, 600-612.	1.3	40
57	Harvesting Air and Light Energy via "Allâ€inâ€One―Polymer Cathodes for Highâ€Capacity, Selfâ€Chargeable, and Multimodeâ€Switching Zinc Batteries. Advanced Functional Materials, 2021, 31, 2007942.	7.8	40
58	Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. Applied Physics Letters, 2007, 91, .	1.5	39
59	CoSO4/SiO2 catalyst for selective synthesis of (9, 8) single-walled carbon nanotubes: Effect of catalyst calcination. Journal of Catalysis, 2013, 300, 91-101.	3.1	38
60	Versatile, Aqueous Soluble C ₂ N Quantum Dots with Enriched Active Edges and Oxygenated Groups. Journal of the American Chemical Society, 2020, 142, 4621-4630.	6.6	38
61	Multifunctional nitrogen-rich "brick-and-mortar―carbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 11061.	5.2	34
62	Graphene-based materials for polymer solar cells. Chinese Chemical Letters, 2016, 27, 1259-1270.	4.8	34
63	Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes. Langmuir, 2012, 28, 5956-5963.	1.6	33
64	Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale, 2013, 5, 11108.	2.8	33
65	Capturing Visible Light in Lowâ€Bandâ€Gap C ₄ Nâ€Derived Responsive Bifunctional Air Electrodes for Solar Energy Conversion and Storage. Angewandte Chemie - International Edition, 2021, 60, 17615-17621.	7.2	33
66	Cross-Linked Graphitic Carbon Nitride with Photonic Crystal Structure for Efficient Visible-Light-Driven Photocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 44503-44511.	4.0	31
67	Voltage-induced incandescent light emission from large-area graphene films. Applied Physics Letters, 2010, 96, .	1.5	30
68	Bioinspired Mesoporous Chiral Nematic Graphitic Carbon Nitride Photocatalysts modulated by Polarized Light. ChemSusChem, 2018, 11, 114-119.	3.6	29
69	Polyaniline/Pure Carbon Assemblies as Efficient Selfâ€standing Metalâ€free Oxygen Electrodes in Alkaline Media for Znâ€Air Batteries. Chemistry - an Asian Journal, 2020, 15, 1544-1548.	1.7	26
70	Preparation of Flame-Retardant Polyurethane and Its Applications in the Leather Industry. Polymers, 2021, 13, 1730.	2.0	26
71	Sulfur doped Co/SiO ₂ catalysts for chirally selective synthesis of single walled carbon nanotubes. Chemical Communications, 2013, 49, 2031-2033.	2.2	25
72	Pyrazine–nitrogen–rich exfoliated C4N nanosheets as efficient metal–free polymeric catalysts for oxygen reduction reaction. Journal of Energy Chemistry, 2020, 49, 243-247.	7.1	24

#	Article	IF	CITATIONS
73	Significantly Enhanced Actuation Performance of IPMC by Surfactant-Assisted Processable MWCNT/Nafion Composite. Journal of Bionic Engineering, 2013, 10, 359-367.	2.7	22
74	Recoverable Photolithographic Patterning for Polarized Display and Encryption. Advanced Materials Technologies, 2020, 5, 2000373.	3.0	22
75	Self-Assembly of Gold Nanowires along Carbon Nanotubes for Ultrahigh-Aspect-Ratio Hybrids. Chemistry of Materials, 2011, 23, 2760-2765.	3.2	20
76	Preparation and Electrocatalytic Activity of Gold Nanoparticles Immobilized on the Surface of 4-Mercaptobenzoyl-Functionalized Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 1746-1751.	1.5	20
77	Preparation and flame-retardant mechanism of polyheptazine/PA6 nanocmposites. Polymer, 2019, 182, 121810.	1.8	20
78	Fabrication and characterization of PbS/multiwalled carbon nanotube heterostructures. Applied Physics Letters, 2007, 90, 161103.	1.5	19
79	Improving Dielectric Properties and Thermostability of CaCu ₃ Ti ₄ O ₁₂ /Polyimide Composites by Employing Surface Hydroxylated CaCu ₃ Ti ₄ O ₁₂ Particles. ACS Applied Polymer Materials. 2019. 1. 1263-1271.	2.0	19
80	E. coli-derived carbon with nitrogen and phosphorus dual functionalities for oxygen reduction reaction. Catalysis Today, 2015, 249, 228-235.	2.2	18
81	Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study. Polymers, 2019, 11, 154.	2.0	17
82	Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes. Applied Physics Letters, 2012, 101, .	1.5	16
83	Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. Journal of Solid State Chemistry, 2015, 224, 45-51.	1.4	16
84	Commercial Fiber Products Derived Free-Standing Porous Carbonized-Membranes for Highly Efficient Solar Steam Generation. Frontiers in Materials, 2018, 5, .	1.2	16
85	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals, 2022, 41, 1160-1175.	3.6	16
86	Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances. Nanotechnology, 2015, 26, 314003.	1.3	15
87	Rational design of metallic nanowire-based plasmonic architectures for efficient inverted polymer solar cells. Solar Energy, 2015, 122, 231-238.	2.9	15
88	Extensional-shear coupled flow-induced morphology and phase evolution of polypropylene/ultrahigh molecular weight polyethylene blends: Dissipative particle dynamics simulations and experimental studies. Polymer, 2019, 169, 36-45.	1.8	15
89	Crosslinked cyanometallate–chitosan nanosheet assembled aerogels as efficient catalysts to boost polysulfide redox kinetics in lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 19262-19268.	5.2	15
90	Capturing Visible Light in Lowâ€Bandâ€Gap C ₄ Nâ€Derived Responsive Bifunctional Air Electrodes for Solar Energy Conversion and Storage. Angewandte Chemie, 2021, 133, 17756-17762.	1.6	15

#	Article	IF	CITATIONS
91	Cutting COFâ€like C ₄ N to Give Colloidal Quantum Dots: Towards Optical Encryption and Bidirectional Sulfur Chemistry via Functional Group and Edge Effects. Angewandte Chemie - International Edition, 2022, 61, e202114182.	7.2	15
92	Structure and properties of ultrahigh molecular weight polyethylene processed under a consecutive elongational flow. Journal of Polymer Research, 2018, 25, 1.	1.2	14
93	Black phosphorus quantum dots as an effective perovskite interfacial modification layer for efficient low-temperature processed all-inorganic CsPbI2Br perovskite solar cells. Solar Energy, 2020, 206, 793-798.	2.9	14
94	Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow. Applied Composite Materials, 2018, 25, 35-43.	1.3	12
95	Donor–Acceptor Nanocarbon Ensembles to Boost Metalâ€Free Allâ€pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation. Angewandte Chemie, 2019, 131, 16363-16368.	1.6	10
96	Tactile UV―and Solarâ€Light Multiâ€Sensing Rechargeable Batteries with Smart Selfâ€Conditioned Charge and Discharge. Angewandte Chemie, 2019, 131, 9349-9354.	1.6	10
97	Octupolar Acrylonitrileâ€Bridged 2Dâ€Conjugated Polymers Enable Bright Farâ€Red Emission with Intense Twoâ€Photon Absorption via Alkoxylation Chemistry. Small, 2021, 17, e2100955.	5.2	10
98	Plasmonic effects and the morphology changes on the active material P3HT:PCBM used in polymer solar cells using Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 888-894.	1.2	9
99	Humidity and Pressure Dual-Responsive Metal–Water Batteries Enabled by Three-In-One All-Polymer Cathodes for Smart Self-Powered Systems. ACS Applied Materials & Interfaces, 2020, 12, 23853-23859.	4.0	9
100	Enhanced photoresponse of CdS/CMK-3 composite as a candidate for light-harvesting assembly. Nanotechnology, 2010, 21, 045601.	1.3	8
101	Thermoresponsive behavior of non-isocyanate poly(hydroxyl)urethane for biomedical composite materials. Advanced Composites and Hybrid Materials, 2022, 5, 843-852.	9.9	8
102	Phase behavior and alignment transition of ultra high molecular weight polyethylene/polyamide 6 blends under extensional and shear flow. Computational Materials Science, 2018, 149, 21-27.	1.4	7
103	Rapid colorimetric glucose detection <i>via</i> chain reaction amplification of acrylic functionalized Ag@SiO ₂ nanoparticles. RSC Advances, 2018, 8, 37729-37734.	1.7	7
104	Recent Advances in Elongational Flow Dominated Polymer Processing Technologies. Polymers, 2021, 13, 1792.	2.0	7
105	Adsorption characteristics and conformational transition of polyethylene glycol–maleated rosin polyesters on the water–air surface. Advanced Composites and Hybrid Materials, 2022, 5, 1233-1240.	9.9	7
106	Optical properties of synthesized organic nanowires. Applied Physics Letters, 2006, 89, 241121.	1.5	6
107	Nanocubes of PbS with visible luminescence synthesized by sulfonated polymer as stabilizer and modifier at room-temperature. Materials Letters, 2009, 63, 2317-2320.	1.3	6
108	Graphene Oxide Derivatives: Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2227-2227.	11.1	5

#	Article	IF	CITATIONS
109	New insights into a first principle calculation and experimental study of Sn-Pb-Ge ternary-metal perovskites for potential photovoltaic application. Materials Science in Semiconductor Processing, 2017, 68, 159-164.	1.9	5
110	Boosting Oxygen Reduction Performance of Manganese Oxide in Alkaline Media by Three-Dimensional Highly Ordered Conductive Porous Framework. Frontiers in Materials, 2019, 6, .	1.2	5
111	Elongational Flow Field Processed Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends with Distinct Interlayer Phase for Enhanced Tribological Properties. Polymers, 2021, 13, 1933.	2.0	5
112	Coupled intramolecular/heterointerfacial electron transfer in polyelectrolyte-shielded Iso-type black phosphorus hetero-structure boosts oxygen reduction kinetics. Journal of Energy Chemistry, 2021, 63, 468-476.	7.1	5
113	Material Based Structure Design: Numerical Analysis Thermodynamic Response of Thermal Pyrolytic Graphite /Al Sandwich Composites. Applied Composite Materials, 2016, 23, 1167-1176.	1.3	4
114	Integrated Photoâ€Responsive Batteries for Solar Energy Harnessing: Recent Advances, Challenges, and Opportunities. ChemPlusChem, 2020, 85, 599-599.	1.3	4
115	Redox Donor–Acceptor Conjugated Microporous Polymers as Ultralong‣ived Organic Anodes for Rechargeable Air Batteries. Angewandte Chemie, 2021, 133, 10252-10259.	1.6	4
116	A Dissipative Particle Dynamics Study of Flow Behaviors in Ultra High Molecular Weight Polyethylene/Polyamide 6 Blends Based on Souza-Martins Method. Polymers, 2019, 11, 1275.	2.0	3
117	Chain conformation and dynamics in ultrahigh molecular weight polyethylene melts undergoing extensional–shear coupled flow: insight from dissipative particle dynamics simulation. Polymer International, 2020, 69, 1213-1219.	1.6	3
118	Programmable Invisible Photonic Patterns with Rapid Response Based on Two-Dimensional Colloidal Crystals. Polymers, 2021, 13, 1926.	2.0	3
119	Temperature-dependent photoluminescence properties of synthesized schistoselike organic nanostructures. Journal of Applied Physics, 2008, 103, 013104.	1.1	2
120	Acrylonitrile‣inked Covalent Organic Frameworks Enable Fast Stimulusâ€Responsive Fluorescence with High Quantum Yield via Fluorine Chemistry. Advanced Photonics Research, 0, , 2200008.	1.7	2
121	Optical emission from disordered multi-branched ZnO nanorods formed by catalyst-free growth. Applied Physics A: Materials Science and Processing, 2011, 103, 329-334.	1.1	1
122	Innenrücktitelbild: Tactile UV―and Solarâ€Light Multiâ€Sensing Rechargeable Batteries with Smart Selfâ€Conditioned Charge and Discharge (Angew. Chem. 27/2019). Angewandte Chemie, 2019, 131, 9389-9389.	1.6	1
123	Enhancing Chain Mobility of Ultrahigh Molecular Weight Polyethylene by Regulating Residence Time under a Consecutive Elongational Flow for Improved Processability. Polymers, 2021, 13, 2192.	2.0	1
124	Cutting COFâ€like C ₄ N to Give Colloidal Quantum Dots: Towards Optical Encryption and Bidirectional Sulfur Chemistry via Functional Group and Edge Effects. Angewandte Chemie, 2022, 134, .	1.6	1
125	Reflection-enhancing coatings from layer-by-layer self-assembled polyelectrolyte/colloidal TiO 2 multilayers. , 2005, 5633, 470.		0
126	Growth of organic–inorganic hybrid nanowires based on p-hydroxybenzoic acid. Materials Chemistry and Physics, 2009, 118, 203-207.	2.0	0

#	Article	IF	CITATIONS
127	Innentitelbild: Donor–Acceptor Nanocarbon Ensembles to Boost Metalâ€Free Allâ€pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. 45/2019). Angewandte Chemie, 2019, 131, 16086-16086.	1.6	0
128	New insight into residual stresses in amine-grafted MWCNTs/binary resin composites under complex thermomechanical loadings. Journal of Thermoplastic Composite Materials, 2019, 32, 1445-1454.	2.6	0
129	Temperature Effect on the Conformation Transition of Ultra-high Molecular Weight Polyethylene/Polypropylene Blends Undergoing Continuous Volume Extensional Flow: A Mesoscopic Simulation. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 540-545.	0.4	Ο