
## Antony W. Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790351/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell Biology, 2001, 3, 958-965.                                                            | 10.3 | 474       |
| 2  | Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier. Cell, 2005, 121, 689-702.                          | 28.9 | 241       |
| 3  | The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nature Structural and Molecular Biology, 2012, 19, 685-692.                                 | 8.2  | 214       |
| 4  | A Supramodular FHA/BRCT-Repeat Architecture Mediates Nbs1 Adaptor Function in Response to DNA<br>Damage. Cell, 2009, 139, 100-111.                                     | 28.9 | 157       |
| 5  | Structural basis for recruitment of BRCA2 by PALB2. EMBO Reports, 2009, 10, 990-996.                                                                                   | 4.5  | 154       |
| 6  | Identification and functional analysis of TopBP1 and its homologs. DNA Repair, 2005, 4, 1227-1239.                                                                     | 2.8  | 147       |
| 7  | Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO Journal, 2008, 27, 704-714.                                   | 7.8  | 147       |
| 8  | Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature, 2013, 493, 246-249.                                                 | 27.8 | 144       |
| 9  | Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. Genes and Development, 2004, 18, 1154-1164. | 5.9  | 140       |
| 10 | Regulation of DNA Replication through Sld3-Dpb11 Interaction Is Conserved from Yeast to Humans.<br>Current Biology, 2011, 21, 1152-1157.                               | 3.9  | 135       |
| 11 | Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange. EMBO Journal, 2006, 25, 3179-3190.                                               | 7.8  | 131       |
| 12 | APLF promotes the assembly and activity of non-homologous end joining protein complexes. EMBO<br>Journal, 2012, 32, 112-125.                                           | 7.8  | 118       |
| 13 | TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair, 2014, 22, 165-174.                                                              | 2.8  | 108       |
| 14 | Smc5/6: a link between DNA repair and unidirectional replication?. Nature Reviews Molecular Cell<br>Biology, 2008, 9, 177-182.                                         | 37.0 | 104       |
| 15 | Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids<br>Research, 2004, 32, 456-464.                                     | 14.5 | 101       |
| 16 | MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Molecular Cell, 2019, 74, 571-583.e8.                                                     | 9.7  | 97        |
| 17 | CCT241533 Is a Potent and Selective Inhibitor of CHK2 that Potentiates the Cytotoxicity of PARP Inhibitors. Cancer Research, 2011, 71, 463-472.                        | 0.9  | 96        |
| 18 | Activation segment exchange: a common mechanism of kinase autophosphorylation?. Trends in Biochemical Sciences, 2007, 32, 351-356.                                     | 7.5  | 86        |

ANTONY W. OLIVER

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function.<br>Nucleic Acids Research, 2015, 43, 6934-6944.                                                                                         | 14.5 | 83        |
| 20 | Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene, 2008, 407, 63-74.                                                                                                   | 2.2  | 75        |
| 21 | Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK. Nucleic Acids Research, 2009, 37, 1701-1712.                                                                  | 14.5 | 75        |
| 22 | The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity. Nature Communications, 2018, 9, 5406.                                                                                        | 12.8 | 74        |
| 23 | Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1.<br>Nucleic Acids Research, 2011, 39, 313-324.                                                                                           | 14.5 | 72        |
| 24 | Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA.<br>Nucleic Acids Research, 2016, 44, 1064-1079.                                                                                        | 14.5 | 68        |
| 25 | Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease.<br>Journal of Clinical Investigation, 2016, 126, 2881-2892.                                                                                | 8.2  | 65        |
| 26 | Structure of an archaeal PCNA1–PCNA2–FEN1 complex: elucidating PCNA subunit and client enzyme specificity. Nucleic Acids Research, 2006, 34, 4515-4526.                                                                                | 14.5 | 64        |
| 27 | Rad62 Protein Functionally and Physically Associates with the Smc5/Smc6 Protein Complex and Is<br>Required for Chromosome Integrity and Recombination Repair in Fission Yeast. Molecular and<br>Cellular Biology, 2004, 24, 9401-9413. | 2.3  | 63        |
| 28 | ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT 2 Domain with Î <sup>3</sup> H2AX. Cell Reports, 2015, 13, 2081-2089.                                                                       | 6.4  | 61        |
| 29 | Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nature Communications, 2017, 8, 14011.                                                                                                                   | 12.8 | 61        |
| 30 | PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2. Nature Communications, 2016, 7, 12404.                                                                                                                    | 12.8 | 60        |
| 31 | Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP-Ribose) and DNA by the Central BRCT Domain of XRCC1. Cell Reports, 2019, 26, 573-581.e5.                                                                        | 6.4  | 58        |
| 32 | The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins. Nature Communications, 2016, 7, 11242.                                                                              | 12.8 | 57        |
| 33 | An Essential Function for the ATR-Activation-Domain (AAD) of TopBP1 in Mouse Development and<br>Cellular Senescence. PLoS Genetics, 2013, 9, e1003702.                                                                                 | 3.5  | 56        |
| 34 | PP2A/B55 and Fcp1 Regulate Greatwall and Ensa Dephosphorylation during Mitotic Exit. PLoS Genetics, 2014, 10, e1004004.                                                                                                                | 3.5  | 55        |
| 35 | Identification and characterisation of 2-aminopyridine inhibitors of checkpoint kinase 2. Bioorganic and Medicinal Chemistry, 2010, 18, 707-718.                                                                                       | 3.0  | 50        |
| 36 | Preferential binding of fd gene 5 protein to tetraplex nucleic acid structures 1 1Edited by A. Klug.<br>Journal of Molecular Biology, 2000, 301, 575-584.                                                                              | 4.2  | 46        |

ANTONY W. OLIVER

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structure-Based Design of Potent and Selective 2-(Quinazolin-2-yl)phenol Inhibitors of Checkpoint<br>Kinase 2. Journal of Medicinal Chemistry, 2011, 54, 580-590.                     | 6.4  | 46        |
| 38 | Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus. Gene, 2011, 484, 75-85.                                                                      | 2.2  | 42        |
| 39 | The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules, 2015, 5, 1515-1539.                                 | 4.0  | 42        |
| 40 | Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. ELife, 2019, 8, .                                                   | 6.0  | 40        |
| 41 | Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Research, 2014, 42, e146-e146.                         | 14.5 | 35        |
| 42 | CCRK is a novel signalling hub exploitable in cancer immunotherapy. , 2018, 186, 138-151.                                                                                             |      | 35        |
| 43 | BRCT domains of the DNA damage checkpoint proteins TOPBP1/Rad4 display distinct specificities for phosphopeptide ligands. ELife, 2018, 7, .                                           | 6.0  | 34        |
| 44 | An Artemis polymorphic variant reduces Artemis activity and confers cellular radiosensitivity. DNA<br>Repair, 2010, 9, 1003-1010.                                                     | 2.8  | 33        |
| 45 | The Structural Basis for Substrate Recognition by Mammalian Polynucleotide Kinase 3′ Phosphatase.<br>Molecular Cell, 2011, 44, 385-396.                                               | 9.7  | 32        |
| 46 | Cancer and the bromodomains of BAF180. Biochemical Society Transactions, 2012, 40, 364-369.                                                                                           | 3.4  | 31        |
| 47 | The BAH domain of Rsc2 is a histone H3 binding domain. Nucleic Acids Research, 2013, 41, 9168-9182.                                                                                   | 14.5 | 31        |
| 48 | A first generation inhibitor of human Greatwall kinase, enabled by structural and functional characterisation of a minimal kinase domain construct. Oncotarget, 2016, 7, 71182-71197. | 1.8  | 30        |
| 49 | Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2.<br>Biochemical Journal, 2016, 473, 1869-1879.                                         | 3.7  | 30        |
| 50 | Phosphorylation-Dependent Assembly and Coordination of the DNA Damage Checkpoint Apparatus by<br>Rad4TopBP1. Molecular Cell, 2013, 51, 723-736.                                       | 9.7  | 27        |
| 51 | The Rad4TopBP1 ATR-Activation Domain Functions in G1/S Phase in a Chromatin-Dependent Manner. PLoS<br>Genetics, 2012, 8, e1002801.                                                    | 3.5  | 24        |
| 52 | Structural characterization of DNA and RNA sequences recognized by the gene 5 protein of bacteriophage fd. Biochemical Journal, 1999, 339, 525-531.                                   | 3.7  | 23        |
| 53 | Crystal structure of the proximal BAH domain of the polybromo protein. Biochemical Journal, 2005, 389, 657-664.                                                                       | 3.7  | 23        |
| 54 | Live-cell single-molecule tracking highlights requirements for stable Smc5/6 chromatin association in vivo. ELife, 2021, 10, .                                                        | 6.0  | 23        |

ANTONY W. OLIVER

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fragment-Based Screening Maps Inhibitor Interactions in the ATP-Binding Site of Checkpoint Kinase 2.<br>PLoS ONE, 2013, 8, e65689.                                                                               | 2.5  | 23        |
| 56 | The conserved Fanconi anemia nuclease Fan1 and the SUMO E3 ligase Pli1 act in two novel<br>Pso2-independent pathways of DNA interstrand crosslink repair in yeast. DNA Repair, 2013, 12, 1011-1023.              | 2.8  | 22        |
| 57 | Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Research, 2021, 49, 4534-4549.                                                                                        | 14.5 | 22        |
| 58 | Phosphorylation-dependent assembly of DNA damage response systems and the central roles of TOPBP1. DNA Repair, 2021, 108, 103232.                                                                                | 2.8  | 21        |
| 59 | Inhibition of MRN activity by a telomere protein motif. Nature Communications, 2021, 12, 3856.                                                                                                                   | 12.8 | 20        |
| 60 | A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour<br>Development. PLoS Genetics, 2016, 12, e1005945.                                                              | 3.5  | 19        |
| 61 | Uncovering an allosteric mode of action for a selective inhibitor of human Bloom syndrome protein.<br>ELife, 2021, 10, .                                                                                         | 6.0  | 18        |
| 62 | A role of the Nse4 kleisin and Nse1/Nse3 KITE subunits in the ATPase cycle of SMC5/6. Scientific Reports, 2020, 10, 9694.                                                                                        | 3.3  | 15        |
| 63 | Development of an oligonucleotide-based fluorescence assay for the identification of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Analytical Biochemistry, 2014, 454, 17-22.                               | 2.4  | 14        |
| 64 | Structure of the human RAD17–RFC clamp loader and 9–1–1 checkpoint clamp bound to a<br>dsDNA–ssDNA junction. Nucleic Acids Research, 2022, 50, 8279-8289.                                                        | 14.5 | 13        |
| 65 | DIS3 isoforms vary in their endoribonuclease activity and are differentially expressed within haematological cancers. Biochemical Journal, 2018, 475, 2091-2105.                                                 | 3.7  | 12        |
| 66 | Design and discovery of 3-aryl-5-substituted-isoquinolin-1-ones as potent tankyrase inhibitors.<br>MedChemComm, 2015, 6, 1687-1692.                                                                              | 3.4  | 11        |
| 67 | Identification and Characterization of a Novel ConstitutionalPIK3CAMutation in a Child Lacking the<br>Typical Segmental Overgrowth of "PIK3CA-Related Overgrowth Spectrum― Human Mutation, 2016, 37,<br>242-245. | 2.5  | 11        |
| 68 | Are SMC Complexes Loop Extruding Factors? Linking Theory With Fact. BioEssays, 2019, 41, e1800182.                                                                                                               | 2.5  | 11        |
| 69 | Structural basis for recruitment of the CHK1 DNA damage kinase by the CLASPIN scaffold protein.<br>Structure, 2021, 29, 531-539.e3.                                                                              | 3.3  | 8         |
| 70 | Structural characterization of DNA and RNA sequences recognized by the gene 5 protein of bacteriophage fd. Biochemical Journal, 1999, 339, 525.                                                                  | 3.7  | 6         |
| 71 | 109 Preferential binding of the fd gene 5 protein to a structured form of the single-stranded DNA sequence d(CT5C4CT4C). Biochemical Society Transactions, 1997, 25, S643-S643.                                  | 3.4  | 2         |
| 72 | A Novel Role of PALB2 in Lymphoid Tumour Development. Blood, 2016, 128, 5113-5113.                                                                                                                               | 1.4  | 0         |